RAIN
rural activation and innovation network
NSF DRL #1612555
Welcome! To
R.A.I.N. in AZ

Kalman Mannis
RAIN Project Director
mannisk@azscience.org

Jeremy Babendure, PhD
PI - RAIN
jbabendure@scitechinstitute.org
About the Team

RAIN Leadership Partners

• Jeremy Babendure, Ph.D. – PI
 Arizona State University, Arizona Technology Council

• Kalman Mannis M.Ed D.D., Arizona Science Center

• Beth Nickel, M.Ed., Arizona Science Center

• Karen Peterman, Ph.D., Karen Peterman Consulting

Project Research Team

• COSI’s Center for Research and Evaluation (CRE)
 o Gary Timko, Ph.D. – Co-PI
 o Dolly Hayde, M.A.
 o Justin Reeves Meyer, Ph.D.
 o Laura Weiss, M.A.

• Jill Stein, M.A. – Research Director (JKS Consulting)

• Eric C. Jones, Ph.D. – Affiliated Researcher, Network Analysis Lead (The University of Texas)

With additional contributions from Rebecca Nall, Martin Storksdieck, Ph.D. (Oregon State University), Andrew Vernon, Dania Wright, and the RAIN regional evaluation leads (Paulette LeBlanc, Dan Matchette, Lynn Winslow, and Tammy Gadeberg)
An Innovations in Development project funded by the National Science Foundation.
Rural Activation and Innovation Network development and design.

The proposal grew from an observed need for place based informal STEM learning opportunities in rural and remote communities, and a lack of understanding on how to build a culture of rural STEM Identity.

And...it took 5 years to get funded.
Insight into the RAIN Grant

- Provided an opportunity to study, promote, and engage rural and remote communities.
- Developed a much needed database of best practices for reaching this population.
- Represents seminal and foundational work in the area of Rural Informal Science Education (ISE).
Deeper View into RAIN Ecosystems

Verde Valley (VV)
Isolated river valley with four towns and one tribal nation.

Sq Mi: 748
Pop: 65,300

Graham/Greenlee (GG)
Mining and agriculture community with 2 cities, 5 towns and 1 tribal nation.

Sq Mi: 6,489
Pop: 46,000

Navapache (NA)
Remote mountain community with 4 cities, 4 towns, numerous unincorporated villages, and 1 tribal nation. 80% of the land is federal or state controlled.

Sq Mi: 10,000
Pop: 100,000

Cochise County (CC)
Blends agriculture, military, and natural resources with 1 city, 5 small towns, and several unincorporated villages. Shares southern border with Mexico.

Sq Mi: 6220
Pop: 127,000

Audiences gathered at Yavapai College’s Xplorology
STEM Summer Camp - Eastern Arizona College
White Mountain Apache, Innovation Nation STEM Expo
Maker Lab at Studio 128 - Willcox
The following questions guided the research:

How do rural communities perceive, access, and engage in informal STEM learning?

How, and to what extent, do community members identify themselves and their communities in relation to STEM?

How do networks foster STEM related identity at personal & community levels?
Local Agents
Rural Innovation Council (RIC)

- Encourage a change in local identity in relation to the value of STEM learning
- Guide an understanding of the value of STEM learning on the local economy
- Create a scope of work that engages community resources and expertise
- Build a research base on best practices to engage and empower communities to use STEM as the basis for change.
RICs Took Charge

In their first year (and reviewed annually) RICs developed a set of artifacts to help guide their efforts:

- Asset Map
- Needs Identification
- Strategic Plan
- Outreach Plan
- Budget Plan
- Media Plan
Rural Innovation Council Network
Snapshots
Multi Generational Opportunities
RAIN Research Findings

Research Data on slides 20-47 were developed, compiled and analyzed by Donnelley Hayde, Gary Timko, PhD, and associates from COSI’s Center for Research and Evaluation along with Jill Stein from Jill Stein Consulting. External Evaluation was overseen by Karen Peterman, PhD of Karen Peterman PhD Consulting.
Outreach Program Type: Across Regions

<table>
<thead>
<tr>
<th>Program Type</th>
<th>Across Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long-Term</td>
<td>32</td>
</tr>
<tr>
<td>Community Program</td>
<td>15</td>
</tr>
<tr>
<td>Club</td>
<td>15</td>
</tr>
<tr>
<td>One-time-Only</td>
<td>13</td>
</tr>
<tr>
<td>After-School</td>
<td>9</td>
</tr>
<tr>
<td>Out of School-Time</td>
<td>6</td>
</tr>
<tr>
<td>Data Not Provided</td>
<td>6</td>
</tr>
<tr>
<td>Summer</td>
<td>4</td>
</tr>
</tbody>
</table>

Total Outreach Projects Funded: 123
Outreach Audience: Across Regions

- Middle School: 42%
- Community: 42%
- Elementary School: 34%
- High School: 28%
- Pre-school: 2%
- Data Not Provided: 1%

123 outreach projects funded
Practitioner Impact from Research
Research Implications

Practitioners offering STEM learning opportunities can

● **align attitudes and beliefs** that community members hold about STEM (e.g. its importance for the future and economy, for understanding the world, learning how things work, and solving problems), and

● their **STEM-related attributes** (e.g., curiosity about the world, interest in learning about how things work, and engaging with new ideas)
Program Considerations

• Offering **practical applications** to everyday life within non-education contexts

• Highlighting **key STEM industries** (e.g. mining, agriculture) in their communities

• Finding ways to make STEM content **personally relevant and appealing** to people
Research Implications

A focus on **local content** offers an opportunity for STEM learning practitioners to **leverage existing STEM industries** (e.g., mining, agriculture) in their communities.

- Increasing awareness of these industries as STEM resources, encouraging community members to learn more, and building partnerships beyond formal education institutions can be strategies for **growing local, place-based STEM identity**.
Research Implications

Rural communities could benefit from investing in educating public audiences about local STEM assets, expertise, knowledge, jobs, and activities relevant to their rural environments.

- This appears to be particularly true for topics related to personal and community well-being (e.g. healthcare, food, gardening), which seem to hold both community importance and personal interest across regions.
Research Implications

When entering communities or bridging between them, it is important to consider culturally-specific and locally-informed ways of thinking about place, including the recognition that definitions of rurality are contextual and widely varying.
RIC Program Audiences
Children were twice as likely to attend outreach events

- 69% for Children
- 31% for Adults

1104 individuals
Almost all children were 14 years old or younger

- 34% 9 years or younger
- 56% 10-14 years
- 10% 15-17 years

737 children
The ages of adult attendees varied, with most being young adults.

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-24 years</td>
<td>6%</td>
</tr>
<tr>
<td>25-34 years</td>
<td>21%</td>
</tr>
<tr>
<td>35-44 years</td>
<td>22%</td>
</tr>
<tr>
<td>45-54 years</td>
<td>11%</td>
</tr>
<tr>
<td>55-64 years</td>
<td>18%</td>
</tr>
<tr>
<td>65+</td>
<td>22%</td>
</tr>
</tbody>
</table>
A majority of adult attendees identified as White

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>79%</td>
</tr>
<tr>
<td>Hispanic</td>
<td>10%</td>
</tr>
<tr>
<td>American Indian or Native Alaskan</td>
<td>4%</td>
</tr>
<tr>
<td>Black</td>
<td>2%</td>
</tr>
<tr>
<td>Asian</td>
<td>1%</td>
</tr>
<tr>
<td>Other</td>
<td>1%</td>
</tr>
</tbody>
</table>

377 adults
More women than men attended outreach events

<table>
<thead>
<tr>
<th></th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>57%</td>
<td>43%</td>
</tr>
</tbody>
</table>

377 adults
Approximately half of the adult attendees had a college degree.
Attendees were split between those who had never attended a STEM event and those who had attended a STEM event recently.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-4 weeks ago</td>
<td>30%</td>
</tr>
<tr>
<td>1-3 months ago</td>
<td>14%</td>
</tr>
<tr>
<td>4-6 months ago</td>
<td>8%</td>
</tr>
<tr>
<td>7-12 months ago</td>
<td>7%</td>
</tr>
<tr>
<td>12+ months</td>
<td>8%</td>
</tr>
<tr>
<td>Never</td>
<td>33%</td>
</tr>
</tbody>
</table>

579 attendees
RAIN Research Findings
How do rural communities perceive, access, and engage in informal STEM learning?

Based on interviews, community focus groups, the Phase 1 community survey (2017), and the Phase 2 community survey (2019)

All regions viewed STEM as potentially important to their communities

- Specifically, important for:
 - The future and the economy
 - Understanding the world, learning how things work, and solving problems

- Community survey respondents identified key STEM industries in their region (e.g., mining, agriculture) as important to their communities, but expressed less interest in learning more about these areas
How do rural communities perceive, access, and engage in informal STEM learning?

Based on interviews, community focus groups, the Phase 1 community survey (2017), and the Phase 2 community survey (2019)

All regions viewed STEM did not perceive their communities as having a strong STEM identity.

- There was **stronger explicit value** associated with STEM in **less rural areas**, but all groups perceived STEM resources as limited.

- Communities **did not have a shared understanding** of what “local STEM” or “place-based STEM” might include.
How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 1 community survey (2017)

Individual STEM identity: qualitative data

Community members were generally able to draw connections between their everyday activities and STEM domains.

- When asked to provide one example of how they do something related to STEM in their life, community members most frequently connected their examples to their *own work* or *domestic life* and a *generic idea of “STEM.”*
How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 1 community survey (2017)

Individual STEM identity:

qualitative data

<table>
<thead>
<tr>
<th>Domain</th>
<th>Motivation Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEM</td>
<td>Professional - General: 28.8%</td>
</tr>
<tr>
<td></td>
<td>The activity was related to the respondent's profession, excluding careers in formal education, informal education, and academic study or apprenticeship (captured separately).</td>
</tr>
<tr>
<td>science</td>
<td>Hobbyist: 27.6%</td>
</tr>
<tr>
<td></td>
<td>The activity was a hobby or a necessary household task.</td>
</tr>
<tr>
<td>math</td>
<td>Consumer-User: 16.5%</td>
</tr>
<tr>
<td></td>
<td>The activity involved the instrumental use of a consumer product.</td>
</tr>
<tr>
<td>engineering</td>
<td>Professional - Formal Education: 14.8%</td>
</tr>
<tr>
<td></td>
<td>The activity related to the respondent's work in the formal education sector.</td>
</tr>
<tr>
<td>technology</td>
<td>Facilitator: 11.5%</td>
</tr>
<tr>
<td></td>
<td>The activity involved facilitating a positive experience for someone else.</td>
</tr>
</tbody>
</table>

Categories were not mutually exclusive.

[Graph showing domain and motivation-role]
How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 1 community survey (2017), with items adapted from Fraser (1978), Halloun & Hestenes (1998), and Semken & Freeman (2008)

Individual STEM identity: quantitative data

There were gaps between moderate personal connection to STEM and strong valuing of STEM.

- Evidence that the term “STEM” can function as a divider between ideas of interest and options for engagement
- Stronger explicit identification with STEM in less rural areas

How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 1 community survey (2017)

Collective STEM identity: STEM and place

All regions viewed STEM as potentially important to community life, but did not perceive strong identity in relation to STEM.

- Stronger explicit *value* associated with STEM in less rural areas, but *all groups* perceived STEM *resources as limited*
How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 2 community survey (2019) (n=366)

Collective STEM identity: STEM and place

Exploratory factor analysis suggested five main areas of community STEM identity based on community members’ ratings of their importance.
How, and to what extent, do community members identify themselves and their communities in relation to STEM?

Based on the Phase 2 community survey (2019) (n=366)

Collective STEM identity: STEM and place

Differences in local “brand” of STEM emerged in each region.

- Community importance (C) was consistently rated **higher** than personal interest (P) in all areas.
How do networks foster STEM related identity at personal & community levels?

Findings based on Phase 2 distribution of RIC member survey (44 respondents across all four regions identifying 404 individuals or entities)

Represented as part of the STEM network

- Government, K-12, and non-profit participation highly represented
- Higher education, including colleges and universities are central
- For-profits, libraries, and healthcare industry are moderately represented
- High STEM influence from people, organizations, and institutions that were not frequently identified (i.e. utilities, military/defense, police/fire/emergency, and foundations)
How do networks foster STEM related identity at personal & community levels?

Findings based on Phase 2 distribution of RIC member survey (44 respondents across all four regions identifying 404 individuals or entities)

• The strong shared understanding among higher education and governmental agencies could be built upon through participation from sectors with low representation and through careful cross-sector communication. (CC, GG, VV)

• There are many vital partnerships in the region; dominated by government, K-12, non-profits, and higher education, but very diverse otherwise, especially at the core of the network of vital STEM partnerships.

• Those whose greater participation could contribute to the local STEM environment were very diverse, including institutions of higher education, K-12 schools, public entities, libraries, local science centers, City Chambers of Commerce, civic organizations, healthcare industry, and many different kinds of businesses.
RAIN Research Methods
Research Methods

The research team used a mixed methods approach (qualitative and quantitative) to collect and analyze data during each of the three phases of this study, address the research questions, and to create an overall narrative for this study.

Qualitative approaches
- **RIC member and community partner interviews** (n=43) (Phase 1: See slide 8)
- **Community focus groups** (n=12) (Phase 1: See slide 8)
- **Literature review** (Phase 1: See slide 8)
- **RIC member interviews** (n=19) (Phase 2: See slide 9)
- **RIC member interviews** (n=21) (Phase 3: See slide 10)
- **RAIN governance COVID-19 response interviews** (n=3) (Phase 3: See slide 10)

Rationale: The research team used qualitative approaches to allow for in-depth exploration of more targeted issues, richer contextual understanding, and opportunities for RICs to describe their work in their own words.

Quantitative approaches
- **Community Member survey** (n=1,004) (Phase 1: See slide 8)
- **Community member survey** (n=572) (Phase 2: See slide 9)
- **RIC member COVID-19 response questionnaire** (n=15) (Phase 3: See slide 10)

Rationale: The research team used survey questionnaires to collect a volume of data that could be analyzed using statistics, aggregated and/or compared across regions, and potentially generalized.
Research Methods

Links to coding rubrics (accessible by RAIN Leadership Team)

• Phase 1 and 2 RIC interviews and Phase 1 community focus groups: 2017-06-07_RIC Interviws Qualitative data coding rubric

• Open-ended question on Phase 1 community survey: RAIN Phase 1 Community Survey_Q7 Coding Rubric_010418_clean copy

• New questions in Phase 2 RIC interviews: RAIN_Phase 2 RIC Interviews_Q2&Q3_codebook

Phase 3 RIC interviews: 2020_05_01 Phase 3 RIC interviews Qualitative data coding rubric
Rural Activation and Innovation Network Collaborators

Arizona State University
ArizonA SciEnCe Center
Never stop wondering.

UTHealth School of Public Health

Arizona SciTech Festival

Center for Research and Evaluation
Lifelong Learning Group

National Science Foundation
EVALUATION TIME!

https://forms.gle/LALsxLmZo7Y2zyMF7