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1. It 1s a fact that if you arrange the cities (or, alternatively, the metro-
politan districts) of the United States in the order of their population in
1940, the population of each city will be inversely proportional to its rank
in the list (see fig. 1). The same fact is true of these cities at other census
dates — back to the first census -~ and for the cities of a number of other
countries of the world.

It is a fact that if you arrange the words that occur in James Joyce’s
Ulysses in the order of their frequency of occurrence in that book, the
frequency of each word will be inversely proportional to its rank in the list
(see fig. 2). The same fact is true of the other books in English whose word
frequencies have been counted (except, possibly, Finnegan's wake), and it

is true of books in most other languages (although not books in Chinesc).

What do I mean when I say these are “facts’? In a way, it seems incorrect
to speak in this way, since none of my “facts” is literally and exactly true.
For example, since there were 2034 cities over 5000 population in the
United States in 1940, the alleged ““fact’ would assert that there were there-
fore one half as many, 1017, over 10000 population. Actually, there were
1072. It would assert that there were one tenth as many, 203, over 50000
population; actually, there were 198. It would assert that the largest city,
New York, had a population just over ten million people; actually, its
population was seven and one half million. The other “facts” asserted

* This work was supported in part by Public Health Service Research Grant MH-07722
from the National Institutes of Mental Health.

I should like to dedicate this essay to the memory of Norwood Russell Hanson, in
acknowledgment of my debt to his Parterns of discovery. His work did much to reestablish
the notion that the philosophy of science must be as fully concerned with origins of
scientific theories as with their testing — indeed that the two are inextricably interwoven.
His reconstruction of Kepler’s retroduction of the laws of planetary motion will long serve

as a model of inquiry into the history and philosophy of science.
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above, for cities and words, hold only to comparable degrees of approxi-
mation.

At the very least, one would think, the statements of fact should be
amended to read “nearly inversely proportional” or “‘approximately in-
versely proportional” rather than simply “inversely proportional”. But how
near is “nearly”, and how approximate is ‘‘approximately’’? What degree of
deviation from the bald generalization permits us to speak of an approxi-
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Fig. 1. Hundred largest U.S. cities, 1940
(ranked in order of decreasing size).

mation to the generalization rather than its disconfirmation? And why do
we prefer the simple but approximate rule to the particular but exact facts?

2. It is well known - at least among mathematical statisticians — that
the theory of statistical tests gives us no real help in choosing between
an approximate generalization and an invalid one.! By imbedding our

) For a brief, but adequate statement of the reasons why “literally to test such hypotheses
... is preposterous”, see SAVAGE [1934] pp. 254-256. Since such tests are still reported
frequently in the literature, it is perhaps worth quoting SAVAGE [1954] p. 254 at slightly
greater Jength: “The unacceptability of extreme null hypotheses is perfectly well known;
it is closely related to the oftenheard maxim that science disproves, but never proves,
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generalization in a probability model, we can ask: If this model describes
the real “facts” what is the probability that data would have occurred at
least as deviant from the generalization as those actually observed? If
this probability is very low — below the magic one per cent level, say — we are
still left with two alternatives: the generalization has been disconfirmed,
and is invalid; or the generalization represents only a first approximation
to the true, or ‘“‘exact’ state of affairs. |
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Fig. 2. Words occurring in Joyce’s Ulysses (ranked by frequency of occurrence).

Now such approximations abound in physics. Given adequate apparatus,
any student in the college laboratory can “‘disconfirm’ Boyle’s Law - i.e.,
can show that the deviations of the actual data from the generalization that
the product of pressure by volume is a constant are too great to be dismissed
as “chance”. He can “disconfirm” Galileo’s Law of Falling Bodies even

hypotheses. The role of extreme hypotheses in science and other statistical activities seems
to be important but obscure. In particular, though I, like everyone who practices statistics,
have often ‘tested’ extreme hypotheses, I cannot give a very satisfactory analysis of the
process, nor say clearly how it is related to testing as defined in this chapter and other
theoretical discussions”.
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low relative to the velocity of light, and (b) by showing that just under those
conditions they can be derived in the limit from the more general laws of
Relativity.

From these, and many other examples, we can see what importance
the physical and biological sciences attach to finding simple generalizations
that will describe data approximately under some set of limiting conditions.
Mendel’s treatment of his sweet-pea data, as reflecting simple ratios of 3
to 1 in the second-generation hybrids, is another celebrated illustration; as
is Prout’s hypothesis (uneasily rejected by chemists for several generations
until its exceptions were explained by the discovery of isotopes) that all
atomic weights are integral multiples of the weight of the hydrogen atom.
All of these examples give evidence of strong beliefs that when nature behaves
in some unique fashion - deals a hand of thirteen spades, so to speak — this
uniqueness, even if approximate, cannot be accidental, but must reveal
underlying lawfulness. |

3. Let us return to city sizes and word frequencies. We have described
the law-finding process in two stages:

(1) finding simple generalizations that describe the facts to some degree
of approximation; |

(2) finding limiting conditions under which the deviations of facts from
generalization might be expected to decrease.
 The process of inference from the facts (the process called “retroduction™
by Peirce and Hanson?2) does not usually stop with this second stage, but
continues to a third: |

(3) explaining why the generalization *“‘should” fit the facts. (Examples
are the statistical-mechanical explanation for Boyle’s Law or Boyle’s own
“spring of the air” explanation, and Newton’s gravitational explanation for
Galileo’s Law.) .

Before we go on to this third stage, we must consider whether we have
really been successful in carrying out the first two for the rank-size distribu-
tions.

Does the generalization that size varies inversely with rank really fit the
facts of cities and words even approximately? We plot the data on double
log paper. If the generalization fits the facts, the resulting array of points
will (1) fall on a straight line, (2) with a slope of minus one.

Since we earlier rejected the standard statistical tests of hypotheses as
inappropriate to this situation, we are left with only judgmental processes

2 HANsON [1961] pp. 85-88.

—all
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for deciding whether the data fall on a straight line. It is not true, as is
sometimes suggested, that almost any ranked data will fall on a straight line
when graphed on doubly logarithmic paper. It is quite easy to find data that
are quite curvilinear to the naked eye (see fig. 3). Since we are not committed
to exact linearity but only approximate linearity, however, the conditions we
are imposing on the data are quite weak, and the fact that they meet the

conditions is correspondingly unimpressive. We may therefore find the

evidence unconvincing that the phenomena are “‘teally” linear in the limiting
cases. The phenomena are not striking enough i this respect to rule out
coincidence and chance. Should we believe the data to be patterned?

It has often been demonstrated in the psychological laboratory that
men — and even pigeons — can be made to imagine patterns in stimuli which
the experimenter has carefully constructed by random ‘processes. This be-
havior is sometimes called “superstitious”, because it finds causal con-
nections where the experimenter knows none exist in fact. A less pejorative
term for such behavior is “regularity-seeking” or “law-seeking”. It can be
given a quite respectable Bayesian justification. As JEFFREYS and WRINCH
[1921] have shown, if one attaches a high a priori probability to the hy-
pothesis that the world is simple (i.e., that the facts of the world, properly
viewed, are susceptible to simple summarization and interpretation); and
if one assumes also that simple configurations of data are sparsely distributed
among all logically possible configurations of data, then a high posterior
probability must be placed on the hypothesis that data which appear
relatively linear in fact reflect approximations to conditions under which a
linear law holds.

The reason that apparent linearity, by itself, does not impress us is
that it does not meet the second condition assumed above — the sparsity of
simple configurations. A quadratic law, or an exponential, or a logarithmic,
are almost as simple as a linear one; and the data they would produce are not
always distinguishable from data produced by the latter.

What is striking about the city size and vocabulary data, however, is
not just the linearity, but that the slope of the ranked data, on a log scale,
is very close to minus oné. Why this particular value, chosen from the
whole non-denumerable infinity of alternative values? We can tolerate
even sizeable deviations from this exact slope without losing our confidence
that it must surely be the limiting slope for the data under some “‘ideal” or
“perfect” conditions. * ' '

We might try to discover these limiting conditions empirically, or we
might seek clues to them by constructing an explanatory model] for the
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limiting generalization - the linear array with slope of minus one. In this way
we combine stages two and three of the inference process described at the
beginning of this section. Let us take this route, confining our discussion
to city size distributions.

4. To *“explain” an empirical regularity is to discover a set of simple
mechanisms that would produce the former in any system governed by the
latter. A half dozen sets of mechanisms are known today that are capable of
producing the linear rank-size distribution of city populations. Since they are
all variations on one or two themes, I will sketch just one of them (SiMON
[1955]). |

We consider a geographical area that has some urban communities as well
as rural population. We assume, for the urban population, that birth rates
and death rates are uncorrelated with city size. (“‘Rate” here always means
“number per year per 1000 population”.) We assume that there is migration
between cities, and net emigration from rural areas to cities (in addition
to net immigration to cities from abroad, if we please). With respect to all
migration, we assume: (1) that out-migration rates from cities are uncorrelated
with city size; (2) that the probability that any migrant, chosen at random,
will migrate to a city in a particular size class is proportional to total urban
population in that class of cities. Finally, we assume that of the total growth
of population in cities above some specified minimum size, a constant
fraction is contributed by the appearance of new cities (i.e., cities newly
grown to that size). The resulting steady-state rank-size distribution of
cities will be approximately linear on a double log scale, and the slope of the
array will approach closer to minus one as the fraction of urban population
growth contributed by new cities approaches zero.

When we have satisfied ourselves of the ‘“‘reasonableness’ of the as-
sumptions incorporated in our mechanism, and of the insensitivity of the
steady-state distribution to slight deviations from the assumptions as given,
then we may feel, first, that the empirical generalization can now be regarded
as “fact”; and, second, that it is not merely “brute fact” but possesses a
plausible explanation. |

But the explanation does even more for us; for it also suggests under
what conditions the linearity of the relation should hold most exactly, and
under what conditions the slope should most closely approximate to one. If
the model is correct, then the rank-size law should be best approximated in
geographical areas (1) where urban growth occurs largely in existing cities,
(2) where all cities are receiving migration from a common “pool’’; and (3)
where there is considerable, and relatively free, migration among all the
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cities. The United States, for example, would be an appropriate area to fit
the assumptions of the model; India a less suitable area (because of the
relatively weak connection between its major regions); Austria after World
War I a still less suitable area (because of the fragmentation of the previous
Austro-Hungarian Empire, see fig. 3). I do not wish to discuss the data here
beyond observing that these inferences from the model seem generally to be
borne out.
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Fig. 3. Rank-size distribution of cities in Austro-Hungarian Empire, 1910‘ (—) and
in Austria, 1934 (----- ).

S. In our account thus far, the simplicity of the empirical generalization
has played a central role. Simplicity is also an important concept in POPPER
[1961] 3 but Popper treats simplicity in a somewhat different way than we
have done. Popper (on p. 140) equates simplicity with degree of falsifiability.
A hypothesis is falsifiable to the degree that it selects out from the set of all-

possible worlds a very small subset, and asserts that the real world belongs to
this subset.

$ Especially Chapter VII.
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There is a strong correlation between our intuitive notions of simplicity
(e.g., that a linear relation is simpler than a polynomial of higher degree)
and falsifiability. Thus, among all possible monotonic arrays, linear arrays
are very rare. (They would be of measure zero, if we imposed an appropriate
probability measure on the set of all monotonic arrays.) Linear arrays with
slope of minus one are even rarer. |

No one has provided a satisfactory general measure of the simplicity

1950 ‘ )
10’
Population
tripled
@
10‘ ® @
. . '.: .‘l ....l:: ¢
. e o . '.i{: ’

T Y% i

4
10

10* 10°% 10° | 10’ 1900

Fig. 4. Population of U.S. metropolitan districts, 1900 and 1950.
(Only districts over 100000 population in 1950 are shown.)

or falsifiability of hypotheses. In simple cases, the concepts have an obvious
connection with degrees of freedom: the fewer the degrees of freedom, or
free parameters, the simpler and more falsifiable the hypothesis. I shall

not undertake to carry the formalization of the concepts beyond this
intuitively appealing basis 4.

¢ The most serious attempts at formalization are those undertaken by JErFrREYS and
WRINCH [1921], and GOODMAN [1958]. I must note in passing that in his discussion of the
former authors Porper [1961) does not do justice to their technical proposal for intro-
ducing prior probabilities based on simplicity.
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Notice, however, that our use of simplicity is quite different from POPPER’s
[1961]. Popper’s argument runs like this: it is desirable that hypotheses
be simple so that, if they are false, they can be disconfirmed by empirical
data as readily as possible. Our argument (apparently first introduced by
JerFrREYS and WRINCH [1921]) runs: a simple hypothesis that fits data
to a reasonable approximation should be entertained, for it probably reveals
an underlying law of nature. As Popper himself observes (PoPPER [1961]
p. 142, footnote*2), these two arguments take quite opposite positions with
respect to the “probability” or “plausibility” of simple hypotheses. He regards
such hypotheses as describing highly particular, hence improbable states of
the world, and therefore as readily falsified. JEFFREYS and WRINCH [1921]
(and I) regard them as successfully summarizing highly unique (but actual)
states of the world, therefore as highly plausible.

Which of these views is tenable would seem to depend on which came
first, the generalization or the data. If 1 construct generalizations, with
no criterion to guide my choice except that they be simple, and subsequently
apply them to data, then the simpler the generalization the more specific
their description, and the less likely that they will stand up under their
first empirical test. This is essentially Popper’s argument.

But the argument does not apply if the generalization was constructed

with the data in view. The rank-size hypothesis arises because we think to
plot the data on double log paper, and when we do, it appears to be linear
and to have a slope of minus one. There is no thought of using the data to
falsify the generalization, for the latter has come into being only because
it fits the data, at least approximately.
Now one can cite examples from the history of science of both of these
alternative sequences of events. It is probably true, however, that the first
sequence - generalization followed by data ~ seldom occurs except as a
sequel to the second. The Special Theory of Relativity, for example, led
to the prediction of the convertibility of mass into energy. But Special
Relativity itself was based on a generalization, the Lorentz-Fitzgerald
equation, that was derived to fit facts about the behavior of particles in
very intense fields of force, as well as other facts about electromagnetics
and the “luminiferous ether”’. Special Relativity did not commend itself to
Einstein merely because of its “‘simplicity”’ independently of the facts to be
explained (the Galilean transformations would be thought by most people to
be simpler than the Lorentz).

If the generalization is just that — an approximate summary of the data -
then it is certainly not falsifiable. It becomes falsifiable, or testable, when
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(a) it is extended beyond the data from which it was generated, or (b) an
explanatory theory is constructed, from which the generalization can be
derived, and the explanatory theory has testable consequences beyond the
original data. |

With respect to the city size data, case (a) would arise if the rank size
generalization were proposed after examining the data from the 1940 U.S.
Census, and then were extrapolated to earlier and later dates, or to the
cities of other countries. Case (b) would arise if we were to note that the
explanatory theory of Section 4, above, has implications for patterns of
migration that could be tested directly if data on points of origin and
destination of migrants were available.

. It should be evident that the mechanisms incorporated in the explanatory
theory were not motivated by their falsifiability. They were introduced in
“order to provide “plausible” premises from which the generalization
summarizing the observed data could be deduced. And what does *‘plausible”
mean in this context? It means that the assumptions about birth and death
rates and migration are not inconsistent with our everyday general knowledge=
of these matters. At the moment they are introduced, they are already
known (or strongly suspected) to be not far from the truth. The state of
affairs they describe is not rare or surprising (given what we actually know
about the world); rather their subsequent empirical falsification would be
rather surprising. What is not known &t the moment they are introduced 1s
whether they provide adequate premises for the derivation of the rank-size
generalization.

Explaining the empirical generalization, that is, providing a set of mecha-
nisms capable of producing it, therefore reintroduces new forms of test-
ability to replace those that were lost by accepting the approximation to the
data. Even without data on migration, the mechanism proposed to explain
. the city rank-size law can be subjected to new tests by constructing the
transition matrix that compares the sizes of the same cities at two points of
time (taking the 1900 population, say, as the abcissa, and the 1950 population
as the ordinate (see fig. 4)). The explanatory mechanism implies that the
means of the rows in this matrix fall on a straight line through the
" origin (or on a straight line of slope +1 on a log-log scale). The result
(which we will expect to hold only approximately) is equivalent to the
proposition that the expected growth rates are independent of initial city
s1ze.

6. In the preceding sections a model has been sketched of the scientific
activities of hypothesis-generation and hypothesis-testing. The model suggests
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that there are several distinct processes that lead to hypotheses being
formulated, judged with respect to plausibility, and tested. One of these
processes, the generation of simple extreme hypotheses from the “striking”
characteristics of empirical data, fits closely the idea of JEFFREYS and
WRINCH [1921] that simple hypotheses possess a high plausibility. A second
ction of explanations for these extreme hypotheses,
takes us back to POPPER’s [1961] idea that simple hypotheses entail strong
and “improbable” consequences, hence are readily falsified (if false). There
is no contradiction between these two views.

To elucidate further this model of the scientific process, and to reveal
some additional characteristics it possesses, the remaining sections of this
paper will be devoted to the analysis of a second example, this one of
considerable interest to the psychology of learning and concept formation.
An important question in psychology during the past decade has been
whether learning is to be regarded as a sudden, all-or-none phenomenon,
or whether it is gradual and incremental. One value in stating the question
this way is that the all-or-none hypothesis is a simple, extreme hypothesis,
hence is highly falsifiable in the sense of PoPpEr [1961].

The experiments of Rock [1957] first brought the all-or-none hypothesis
into intense controversy. His data strongly supported the hypothesis (even
under rather strict limits on the degree of approximation allowed). Since his
generalization challenged widely-accepted incrementalist theories, his ex-
periment was soon replicated (seldom quite literally), with widely varying
findings. The discussion in the literature, during the first few years after
Rock’s initial publication, centered on the ‘validity” of his data — ie.,
whether he had measured the right things in his experiment, and whether he
had measured them with adequate precision.

Only after several years of debate and publication of apparently contra-
dictory findings was some degree of agreement reached on appropriate
designs for testing the hypothesis. Still, some experimenters continued to
find one-trial learning, others incremental learning. After several more years,
the right question was asked, and the experiments already performed were
reviewed to see what answer they gaveS. The “right question’, of course,
was: “Under what conditions will learning have an all-or-none character?”
The answer, reasonably conformable to the experimental data, commends
itself to common sense. Oversimplified, the answer is that one-trial learning
1s likely to occur when the time per trial is relatively long, and when the

$ PosTMAN [1963], UNDERWOOD [1964].
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items to be learned (i.e., associated) are already familiar units®. There are
the “ideal” or “perfect” conditions under which one-trial learning can be
expected to occur.

7. Meanwhile, the all-or-none hypothesis was also being applied to
concept attainment experiments. Important work was done in this area by
Estes, by Bourne, and by Bower and Trabasso, among others. I will take
as my example for discussion a well-known paper by Bower and Trabasso
that Gregg and I have analysed in another context?.

The experiments we shall consider employ an N-dimensional stimulus
with two possible values on each dimension, and having a single relevant
dimension (i.c., simple concepts). On each trial, an instance (positive or
negative) is presented to the subject; he responds *“‘positive™ or “‘negative™;
and he is reinforced by “right’ or “wrong’, as the case may be.

Bower and Trabasso obtain from the data of certain of their experiments
an important empirical generalization: the probability that a subject will
make a correct response on any trial prior to the trial on which he makes
his last error is a constant. (In their data, this constant is always very
close to one half, but they do not incorporate this fact in their generalization
as they usually state it.) Since the generalization that the probability of
making a correct response is constant is an extreme hypothesis, the standard
tests of significance are irrelevant. We must judge whether the data fit the
generalization “well enough™. Most observers, looking at the data, would
agree that they do (see fig. 5).

But Bower and Trabasso go a step further. They derive the empirical
generalization from a simple stochastic model of the learning process -

they explain it, in the sense in which we used that term earlier. The ex- |

planation runs thus: (1) the subject tries out various hypotheses as to
what is the correct concept, and responds on individual trials according
to the concept he is currently holding; (2) if his response is wrong, he
tries a new concept. Two important empirical quantities are associated with

¢ As a matter of history, ] might mention that in 1957, prior to Rock’s {1957] publication
of his experiment, a theory of rote learning, designed especially to explain data that were
in the literature prior to World War II (the serial position curve, the constancy of learning
time per item, some of E. Gibson’s experiments on stimulus similarity) had been developed
by E. Feigenbaum and the author. This theory, EPAM, was sufficiently strong to predict
the conditions under which one-trial learning would occur. It was not widely known
among psychologists at that time, however, and had little immediate influence on the
controversy. (But see GREGG, CHENZOFF and LAUGHERY [1963], also, GREGG and SIMON
[1967b].)

7 BowziR and TrRaBAssO [1964]); GREGG and SiMON [1967a].
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the model: The probability of making a correct response prior to the last
error; and the probability that any particular trial will be the trial of lasterror.
Now there are in fact two distinct all-or-none generalizations that can
be formulated in terms of these two empirical quantities. The first, already
mentioned, is the generalization that the probability of making a correct
response is constant as long as the subject holds the wrong hypothesis
about the concept (i.c., up to the trial of his last error). The second, quite
different, is the generalization that the probability of switching to the
correct hypothesis about the concept does not change over trials (i.c., that
the probability is constant that each trial will be the trial of last error).
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Fig. 5. Concept experiment: percentage of successes prior to the last error
(from Bower and Trabasso).

To test the first (correct response) all-or-none generalization, we have
one datum from each subject for each trial prior to his last error - a con-
siderable body of data to judge the approximation of the error rate to a
constant. To test the second (correct hypothesis) all-or-none generalization,
we have only one datum from each subject — the trial on which he made his
last error. Hence, trial-to-trial changes in the probability of switching to
the right concept are confounded with differences in that probability among
subjects. If, for any single subject, this probability increases with trials,
the increase is counterbalanced by the fact that the subjects with lowest
average probability will tend to learn last. Thus (as Bower and Trabasso
are careful to point out) the data to test the second generalization directly
are scanty and inadequate. '
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8. The Bower-Trabasso stochastic model is an explanation of the observed

constancy of the error rate. But it is a very bland model, making rather
minimal assumptions about the process that is going on. We can pursue the
goal of explanation a step further by constructing a more detailed model of
the cognitive processes used by subjects in concept attainment, then using
this detailed model to subject the theory to further tests. (As Gregg and I
have shown in our previous paper on this topic (GREGG and SIMON [1967a]),
Bower and Trabasso do, in fact, employ such a process model, but only
informally.)
There are two important differences between the summary stochastic
model and the more detailed process model. The process model, but not the
stochastic model, spells out how the experimenter selects (on a random
basis) the successive instances, how the subject responds, and how he selects
a new concept when his current one is found wrong. The stochastic model,
but not the detailed model, contains two free parameters, one specifying the
probability that the subject’s response will be (fortuitously) correct when he
does not hold the correct concept; the other specifying the probability that
he will select the correct concept as his new one when his current concept is_
found wrong.

The stochastic model and process model can be formalized by stating
them in a computer programming language (GREGG and SIMON [1967a]).
When this is done, it is found that the stochastic model requires 15 state-
ments - i.¢., simple computer instructions - for its formulation, the detailed
process model 27. Against this parsimony of the stochastic model must be
balanced the fact that that model contains two free numerical parameters,
the process model none. Which model is the simpler?

If we apply Popper’s criteria of simplicity — the simpler theory being the
one that is more highly falsifiable — then the question has a definite answer.
The detailed process model is simpler than the stochastic model (see GREGG
and SiMON [1967a] pp. 271-272). For, by a straightforward aggregation
of variables, the stochastic model, with particular values for the free para-
meters, can be derived deductively from the process model. Hence, the
process model is a special case of the stochastic model. (The process model
predicts an error rate of about 0.5 per trial prior to the trial of last error.
It also predicts the probability that the last error will occur on a particular
trial, but this probability depends on the structure of the stimuli -~ the num-
ber of attributes they possess, and the number of values of each attribute.)

The additional detail incorporated in the process model’s assumptions
also provides additional opportunities for subjecting the model to empirical
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test. The hypotheses held by the subject as to the correct concept do not
appear explicitly in the stochastic model; hence data relating to these
hypotheses (obtained, say, by asking the subject on each trial what concept
he holds, as was done by FELDMAN [1964], or obtained by indirect pro-
cedures developed by LEVINE [1966]) cannot be used to test that model, but
can be used to test the process model.

If parsimony refers to the brevity with which a theory can be descnbcd
then the stochastic model is the more parsimonious (fifteen statements
against twenty-seven). But lack of parsimony, so defined, must not be
confused with degrees of freedom. We have seen in this case that the less
parsimonious theory is the simpler (by PoPPER’s [1961] criterion), and by
far the more falsifiable.

Testing the detailed process theory raises all the problems mentioned
carlier with respect to extreme hypotheses. If the error rate on guessing
trials deviates from 0.5 should the theory be rejected? How much of a
deviation should be tolerated? In how many cases can a subject report he is
holding a concept different from that predicted by the theory before we
reject the latter? I have given my reasons earlier for thinking that these
questions are judgmental, and for concluding that the theory of statistical
tests offers no help in answering them. A judgmental answer is that the
theory should be rejected only if it turns out to be “‘radically” wrong.
Otherwise, deviations should lead to a search for variables to account for
them, and for the “ideal” limiting case in which they would disappear.

Justice Holmes once said: ‘“‘Logic is not the life of the law”. I would
paraphrase his aphorism by saying: *“Statistics is not the life of science”.
No existing statistical theory explains what scientists do (or should do)
to retroduce, develop, test, and modify scientific theories.

9. Just as statistically significant deviations of data from a general-
ization should not always, or usually, lead us to abandon the generalization,
so we should not be unduly impressed by excellent statistical fits of data to
theory. More important than whether the data fit is why they fit - i.e., what
components i1n the theory are critical to the goodness of fit. To answer this
question, we must analyse the internal structure of the theory.

For example, under the conditions where all-or-none learning can be
expected to take place, the learning trials can generally be divided into two
parts: an initial sequence prior to learning, during which the subject can
only guess at the correct answer; a terminal sequence, during which the
subject knows the correct concept, and makes no new mistakes. Let us
suppose that the boundary between these two segments can be detected
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(as it can in the concept-learning experiments by the trial on which the
last error is made).

Under these conditions, no important conclusions can be drawn about
psychological characteristics of the subjects by examining the statistical
structure of their responses prior to learning. For the statistics of these
responses are simply reflections of the experimenter’s randomization of
the sequence of stimuli. In one experiment, ESTES [1959], for example,
employed three different conditions differing only with respect to the number
of alternative responses (2, 4 and 8, respectively) available to the subject
(see SiMON [1962]). He found that the relative number of errors per trial
made 1n these three conditions could be represented by the formula,
A(N—-1)/N, where A is a constant and N is the number of alternative
responses.

The data on relative numbers of errors fit this formula with great accuracy
~ a clearcut case of success for an extreme hypothesis of the kind we have
been commending in this paper. However, the hypothesis that was being

tested was not a generalization about psychology, but a well-known general-_

1zation about the laws of probability: that in drawing balls at random from
an urn containing white and black balls in the ratio of 1 to (N~1), on the
average (N—1)/N of the balls drawn will be black. This is true regardless of
whether the subjects themselves, prior to learning, thought they were simply
guessing or thought they were responding in selective, patterned ways to
the stimuli. By randomizing the sequence of stimuli presented, the ex-
perimenter guaranteed the applicability of the laws of probability to the

subject’s errors, independently of the systematic or “random’ character of
the subject’s behavior.

simple generalizations to data can be attributed to the random presentation
of stimuli, rather than to characteristics of the subjects (SiMON [1957],
SIMON [1962], GREGG and SIMON [1967a]). This does not imply that it is
useless to extract the underlying regularities from the data: but we must be
careful to provide the regularities with a correct explanation. To do so, we
must examine the internal structure of the theories that lead to the successful
generalization.

10. Throughout this paper, considerable stress has been placed on the
close interaction between hypotheses and data in the building and testing of
theories. In most formal theories of induction, particularly those that
belong to the genus “hypothetico-deductive’ or “H-D”, hypotheses spring
full-blown from the head of Zeus, then are tested with data that exist,

As I have pointed out elsewhere, a number of other excellent fits of
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timelessly and quite independently of the hypotheses8. Theories as other-
wise divergent as Popper’s and Carnap’s share this common framework.

It was one of Norwood Hanson’s important contributions to challenge
this separation of hypothesis from data, and to demonstrate that in the
history of science the retroduction of generalizations and explanations from
data has been one of the central and crucial processes. In making his point,
Hanson was careful not to revert to naive Baconian doctrines of induction.
To look at a series of size-rank distributions, approximately log-linear with
slopes of minus one; then to conclude that al/ such distributions share these
properties, is Baconian. To look at the raw data, and conclude that they can
be described adequately by the log-linear function with slope of minus one
1s not Baconian. It is the latter form of derivation of generalizations from
data with which Hanson was primarily concerned, and to which he (following
Peirce) applied the name *‘retroduction”.

One of my principal theses here has been that hypotheses retroduced
in this way are usually highly plausible, and not highly improbable, as
PoPPER [1961] would insist. We have already resolved part of the apparent
paradox. The “improbability” to which Popper refers is improbability of
the very special state of nature described by the empirical generalization,
not improbability of the generalization itself. But it remains to understand
how the scientist can ever be lucky enough to discover the very special general-
izations that describe these a priori improbable (but actual) states of nature.

Fortunately, considerable light has been cast on this question by progress
in the past decade in our understanding of the theory of human problem

- solving (SIMON [1966]). If the scientist had to proceed by searching randomly

through the (infinite) space of possible hypotheses, comparing each one
with the data until he found one that matched, his task would be hopeless
and endless. This he does not need to do. Instead, he extracts information
from the data themselves (or the data “‘cleaned up” to remove some of the
noise), and uses this information to construct the hypothesis directly,
with a modest amount of search. |

Let us consider a concrete example (BANET [1966]). Suppose we are
presented with the sequence: %, %, 44, 4, .... What simple generalization
can we discover to fit this sequence? We note that all the numerators are

8 For a criticism of this view, see SIMON [1955]. In that paper 1 was concerned specifically °
with the relative dating of theory and data, and while I still subscribe to the general
position set forth there - that this dating is relevant to the corroboration of hypotheses by
data - ] would want to modify some of my specific conclusions about the form of the
relevance, as various paragraphs in the present paper will show.
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squares, that the first and third denominators are four less than their
numerators, the second and fourth denominators are one less. We notice
that the sequence appears to be monotone decreasing, and to approach
& limit — perhaps unity. Nine is 32, 25 is 52, Suppose we number the terms
3, 4, 3, 6. The corresponding squares are 9, 16, 25, 36. Let’s multiply numer-
ator and denominator of the second and fourth terms by four, getting: £, 485,
41, 4%,.... Now the empirical generalization is obvious: the general term
of the sequence is n*/(n? — 4). Physicists will recognize this as the well known
Balmer series of the hydrogen spectrum, and what we have done is to recon-
struct hypothetically part of Balmer’s retroduction. (He probably followed
a somewhat different path, and we have only considered the last half of his
problem of getting from data to generalization, but this partial and somewhat
unhistorical example will serve to illustrate our central point. For the
actual history, see BANET’s {1966] interesting paper.)

However great a feat it was for Balmer to extract his formula from the
data, the process he used was certainly not one of generating random hy-
potheses, then testing them. It is better described as a process of searching
for the pattern in the data. It can be shown, for a considerable class of
patterns that are of practical importance, in science, in music, and in
intelligence tests, that the range of relations the searcher must be prepared
to detect is quite small. It may be that these are the sole relations from which
the simplicity of nature is built; it may be they are the only relations we are
equipped to detect in nature. In either event, most of the patterns that
have proved important for science are based, at bottom, on these few simple
relations that humans are able to detect.

11. In this paper, I have examined several aspects of the problem of
testing theories, and particularly those important theories that take the
form of extreme hypotheses. In part, my argument has been aimed at a
negative goal - to show that when we look at realistic examples from natural
and social science, statistical theory is not of much help in telling us how
theories are retroduced or tested.

As an alternative to standard probabilistic and statistical accounts of
these matters, I have proposed that we take into account a whole sequence
of events:

(1) The enterprise generally begins with empirical data, rather than with
a hypothesis out of the blue.

(2) *“Striking” features of the data (e.g., that they are linear on a log scale
with slope of minus one) provide for a simple generalization that summarizes
them - approximately.
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(3) We seek for limiting conditions that will improve the approximation
by manipulating variables that appear to affect its goodness.

(4) We construct simple mechanisms to explain the simple general-
izations — showing that the latter can be deduced from the former.

(5) The explanatory theories generally make predictions that go beyond
the simple generalizations in a number of respects, and hence suggest new
empirical observations and experiments that allow them to be tested further.

“Testing” theories, as that process is generally conceived, is only one
of the minor preoccupations of science. The very process that generates
a theory (and particularly a simple generalization) goes a long way toward
promising it some measure of validity. For these reasons, histories of science
written in terms of the processes that discover patterns in nature would seem
closer to the mark than histories that emphasize the search for data to test
hypotheses created out of whole cloth.
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