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Abstract 

In general diagnostic problems multiple disorders can 
occur simultaneously. AI systems have traditionally han- 
dled the potential combinatorial explosion of possible 
hypotheses in such problems by focusing attention on a 
few “most plausible” ones. This raises the issue of estab- 
lishing what makes one hypothesis more plausible than 
others. Typically a hypothesis (a set of disorders) must 
not only account for the given manifestations, but it 
must also satisfy some notion of simplicity (or coherency, 
or parsimony, etc) to be considered. While various cri- 
teria for simplicity have been proposed in the past, these 
have been based on intuitive and subjective grounds. In 
this paper, we address the issue of if and when several 
previously-proposed criteria of parsimony are reasonable in 
the sense that they are guaranteed to at least identify 
the most probable hypothesis. Hypothesis likelihood is cal- 
culated using a recent extension of Bayesian classification 
theory for multimembership classification in causal diag- 
nostic domains. The significance of this result is that it 
is now possible to decide objectively a priori the 
appropriateness of different criteria for simplicity in 
developing an inference method for certain classes of gen- 
eral diagnostic problems. 

1. Diagnostic Problem-Solving 

During the last decade, a number of artificial intelli- 
gent (AI) systems have been developed that use an 
“abductive” * approach to diagnostic problem-solving 
[Pople73, 821 [Pauker76] [ReggiaSl, 831 [Miller821 [Joseph- 
son841 [Basili85]. These systems use an associative 
knowledge base where causal associations between 

disorders and manifestations are the central component, 
and inferences are made through a sequential 
hypothesize-and-test process. An important but as yet 
unresolved issue in abductive systems for diagnostic 
problem-solving is what characteristics make a set of 
disorders a plausible, “best”, or “simplest” explanatory 
hypothesis for observed manifestations. This issue has 
long been an important one in philosophy [Peirce55] [Tha- 
gard78] [Joseph son821 as well as in AI [Rubin75] [Pople73] 
[Pauker76] [Reggia83] [Josephson84], and is not only of 
relevance to diagnostic problem-solving but also to many 
other areas in AI (natural language processing, machine 
learning, etc. [Charniak85] [Reggia85a]). In particular, to 

* Abductive inference is 
ing to the best explanation.” s 

enerally defined to be “reason- 
or a given set of facts, and is 

distinguished from deductive and inductive inference (see 

[Reggia85a\). 
Peirce55 Thagard781 [Pople73] [Josephson82] [Charniak85] 

the authors’ knowledge, all previous suggestions of 
hypothesis plausibility have generally been proposed pri- 
marily on intuitive rather than formal grounds. 

Over the last few years we have been studying a 
formal model of diagnostic problem-solving referred to as 
parsimonious covering theory [Reggia83,85b] [Peng86a]. 
Recently, we have successfully integrated into this causal 
reasoning model the ability to calculate the relative likeli- 
hood of any evolving or complete diagnostic hypothesis 
[Peng86b]. As a result an objective measure (relative 
likelihood) can now be used to examine several previous 
subjective criteria of hypothesis plausibility. The rest of 
this paper examines this issue, and is organized as fol- 
lows. First, the parsimonious covering model of problem- 
solving, which is based on an underlying causal relation- 
ship and the use of probability theory in this context, are 
briefly summarized in Sections 2 and 3. Section 4 then 
examines several different criteria for hypothesis plausibil- 
ity used in AI systems with respect to whether they lead 
to the most probuble diagnostic hypothesis. Situations 
where the use of each criterion is/is not appropriate are 
identified. Section 5 concludes by summarizing the impli- 
cations of these results for AI system development. 

2. Parsimonious Covering Theory 

Causal associations between disorders and manifesta- 
tions are the central element of diagnostic knowledge 
bases in many real-world systems, and parsimonious cov- 
ering theory is based on a formalization of causal associa- 
tive knowledge [Peng86a] [Reggia85b]. The simplest type 

of diagnostic problems in this model, and the one we use 
in this paper, is defined to be a 4-tuple P = 
<D,M,C,M+> where 

D = {di, . . . , d,} is a finite non-empty set of 
disorders; 

M = {ml, . . . , mk} is a finite non-empty set of 
manifestations (symptoms); 

C C D x M is a relation with domain(C) = D 
and range(C) = M; and 

M+C M is a distinguished subset of M. 

The relation C captures the intuitive notion of 
causal associations in a symbolic form, where <d; ,mj > E 
C iff “disorder di may cause manifestation mj “. Note 
that <di ,mi > E C does not imply that mj always 
occurs when di is present, but only that mj may occur. 
D, M, and C together correspond to the knowledge base 
in an abductive expert system. M+, a special subset of M, 
represents the features (manifestations) which are present 
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in a specific problem. Fig. 1 graphically illustrates the 
symbolic causal knowledge of a tiny abstract diagnostic 
problem of this type. 

dl d2 d3 d4 ci I ml m2 m3 m4 

Fig. 1. An example of a very simple abstraction 
of a diagnostic problem. 

Two functions, “causes” and “effects”, can be 
defined in the above framework: for all mjE M, 
causes(mj ) = {di 1 <d i ,mj > E C}, representing all pos- 
sible causes of manifestation mj ; for all di E D, effects(di ) 
= {mj 1 <di ,rni > E C}, representing all manifestations 
which may be caused by di. A set of disorders D1 E D is 
then said to be a cover of a set of manifestations MJ 5 
M if MJ & effects(D1), where by definition effects(D, ) = 

U effects(di ). Also, we define causes(MJ) = 
4~ Dr 

U CiMlSeS( mj ). 

mjE M, 

In parsimonious covering theory, a diagnostic 
hypothesis must be a cover of M+ in order to account for 
the presence of all manifestations in M+. On the other 
hand, not all covers of M’ are equally plausible as 
hypotheses for a given problem. The principle of parsi- 
mony, or “Occam’s Razor”, is adopted as a criterion of 
plausibility: a “simple” cover is preferable to a “complex” 
one. Therefore, a plausible hypothesis, called an expfana- 
tion of M+, is defined as a parsimonious cover of M+, 
i.e., a set of disorders that both covers M+ and satisfies 
some notion of being parsimonious or “simple”. Since 
there is, in general, more than one possible explanation 
for M+, and one is often interested in all plausible 
hypotheses, the set of all explanations of M+ is defined to 
be the solution of a given problem. 

A central question in this theory is thus: what is the 
nature of “parsimony” or “simplicity”? Put otherwise, 
what makes one cover of M+ more plausible than 
another? A number of different parsimony criteria have 
been identified both by us and by others doing related 
work: (1) Single-Disorder Restriction: a cover D1 of M+ is 
an explanation if it contains only a single disorder [Shu- 
bin82]. (2) Minimality: a cover D1 of M+ is an explana- 
tion if it has the minimal cardinality among all covers of 
M+, i.e., it contains the smallest possible number of 
disorders needed to cover M+ [Pople73] [Reggia81, 831. 
(3) Irredundancy: a cover DI of M+ is an explanation if 
it has no proper subsets which also cover M+, i.e., 
removing any disorder from D, results in a non-cover of 
M+ [Nau84] [Reggia84,85b] [Peng86a] [Reiter85] 
(deKleer861. (4) Relevancy: a cover D1 of M+ is an 
explanation if it only contains disorders in causes(M+), 

i.e., every di E DI must be causally associated with some 
mjE M+ [Peng86a]. Other criteria of parsimony are possi- 
ble. Assuming at least one manifestation is present, 
single-disorder covers are minimal. Furt,her, the set of all 
minimal covers is always contained in the set of all 
irredundant covers, which in turn is always contained in 
the set of all relevant covers [Peng86a]. 

example 1: In Fig. 1, let M+ = {m1,m3}. Then Di 

T: {dl) 

is a minimal cover of M+ because it alone covers 
m1,m3}. The cover D2 = {d,,d,} is irredundant but not 

minimal because neither d2 nor d, alone can cover 
{ml,m3}. The cover D3 = {d,,d,,d,} is relevant but 
redundant because it is a subset of causes({m i,m3}) and 
one of its proper subsets, namely {d2,d3}, is a cover of 
M+. Finally, D4 = {dl,d2,d3,d4} is an irrelevant cover of 
M+ because d 4fG causes( { m i,m 3}). 

The single-disorder restriction, while appropriate in 
some restricted domains [Shubin82] [Reggia85b], is obvi- 
ously not sufficient for general diagnostic problems where 
multiple, simultaneous disorders can occur (and thus we 
will not consider it any further). Minimality captures 
features and assumptions of many previous abductive 
expert systems. However, our experience has convinced us 
that there are clearly cases where minimal covers are not 
necessarily the best ones. For example, suppose that 
either a very rare disorder d i alone, or a combination of 
two very common disorders d2 and d3, could cover all 
present manifestations. If minimality is chosen as the par- 
simony criterion, d 1 would be chosen as a viable 
hypothesis while the combination of d2 and d3 would be 
discarded. A human diagnostician, however, may consider 
the combination of d2 and d, as a possible alternative. 
Minimality also suffers from various computational 
difficulties [Peng86a]. On the other hand, intuition also 
suggests that relevancy is too loose as a 
parsimony/plausibility criterion (in Fig. 1 there are only 2 
irredundant covers, but 5 relevant ones among all 10 cov- 
ers of M+ = {m,,m3}). Therefore, solely on an intuitive 
basis, in our recent work irredundancy has been chosen 
as the parsimony criterion, and the notion of explanation 
equated to the notion of irredundant cover. Irredundancy 
handles situations like that in the above example and 
avoids some computational difficulties of minimality 
[Peng86a]. 

Similar notions are also used in related work by oth- 
ers, although with different emphasis. For example, in de 
Kleer’s work, the notion of “minimal conflict” of an 
abnormal finding corresponds to causes( mj ), while a 
“minimal candidate” corresponds to an irredundant cover 
of M+ in parsimonious covering theory [deKleer86]. Simi- 
larly, in Reiter’s work, the notion of “minimal conflict 
set” corresponds to causes(mi ), “hitting set” to relevant 
cover, and “minimal hitting set” to irredundant cover 
[Reiter85]. One reason that we choose the term “irredun- 
dancy” rather than “minimality” is to avoid any confu- 
sion with the term “minimal cardinality”. 

3. Hypothesis Likelihood 

An alternative approach to determining the plausibil- 
ity of a diagnostic hypothesis is to objectively calculate 
its probability using formal probability theory. The 
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difficulty with this approach in the past has been that 
general diagnostic problems are multimembership 
classification problems [Ben-Bassat80]: multiple disorders 
can be present simultaneously. A hypothesis D, = 

(4, dz, . . . , d, } represents the belief that disorders d 1 
and d2 and , . . and d,, are present, and that all die DI 
are absent. Such problems are recognized to be very 
difficult to handle [Ben-Bassat [Charniak83]. Among 
other things, the set of 21Dl diagnostic hypotheses that 
must be ranked in some fashion is incredibly large in 
most real-world applications (e.g., in medicine, even very 
constrained diagnostic problems may have 
50 5 IDI 5 100; see [Reggia83]). 

Recently we have been successful in integrating for- 
mal probability theory into. the framework of parsimoni- 
ous covering theory in a way that overcomes these past 
difficulties [Peng86b]. This is achieved as follows. In the 
knowledge base, a prior probability pi is associated with 
each di E D where 0 < pi < 1. A causal strength 
0 < Cij 5 1 is associated with each causal association 
<di, mj > E C representing how frequently di causes mj . 
For any <di, mj > $ C, cij is assumed to be zero. A 
very important point here is that cij f P(mj 1 di). The 
probability cij = P(di causes mj Idi) represents how fre- 
quently di causes rni when di is present; the probability 
P(mj 1 di), which is what has been used in previous sta- 
tistical diagnostic systems, represents how frequently mj 
occurs when di is present. Since typically more than one 
disorder is capable of causing a given manifestation mj, 
P(mj I di ) 2 cij. For example, if di cannot cause mj at 
all, Cij = 0, but P( mj 1 di ) 2 0 because some other 
disorder present simultaneously with di may caGuse mj. 

By introducing the notion of causal strengths, and 
by assuming that disorders are independent of each other, 
that causal strengths are invariant (whenever di is 
present, it causes mi with the probability cii regardless 
of other disorders that are present), and that -no manifes- 
tation can occur without being caused by some disorder, 
a careful analysis derives a formula for P(DI I M+), the 
posterior probability of any DI given the presence of any 
M+, from formal probability theory. Here DI, representing 
a hypothesis, denotes the event that all disorders in DI 
are present and all other disorders absent, while M+, 
representing the given findings, denotes that all manifesta- 
tions in M+ are present and all others absent [Peng86b]. 
Specifically, we have proven that manifestations are 
independent under a given D1, and that P(mj ]DI) = 1 - 
n (1 - cij ) for mj E M, D, C D. Then by Bayes’ 

4 EDI 
theorem, it is easy to show that 

n (l- Pi) 

P(DI 1 M+) = dZED . WI, M+) 
PI 

p(M+) 
where n (1 - Pi ) / P(M+) is a constant for all DI given 

d, ED 
any M+. L(D[, M+), called the relative likelihood of DI 
given M+, consists of three components: 

L(b,M+)= LQh,M+). L2(b,M+) .L3(D,, M+), 12al 

where the first product 

L(DI 7 Mt) = 11 P(mj I DI 1 
Wl,E M+ 

informally can be thought of as a weight reflecting how 
likely D1 is to cause the presence of manifestations in the 
given M+; the second product 

LPI, Mt) = 
- 

IT Rw I DI) 
m,~ M-M+ 

=rI II t1 - cd 1 

d, E D, ml Eeffects(d, )-M+ PC1 
can be viewed as a weight based on manifestations 
expected with D1 but which are actually absent; and the 
third product 

L3m'M+) = dtpD, (1 PiPi) 

represents a weight based on prior probabilities of D, 
[Peng86b]. Note that each of these products involves 
only probabilistic information related to di E DI and mj E 
M+ instead of the entire knowledge base. For this reason 
L(DI, M+) is computationally very tractable. 

Eqs 1 and 2a - d make it possible to compare the 
relative likelihood of any two diagnostic hypotheses D, 
and DJ using 

WI I M+) L(DI, M+) 
P(DJ 1 M+) = L(DJ, M+) ’ PI 

Before we use this objective measure to examine various 
subjective notions of plausibility, a brief example may be 
helpful. 

example 2: Let the following probabilities be 
assigned to the problem given in Fig. 1: 

p1 = .Ol p2 = .l p3 = .2 p4 = .2 
Cl1 = .2 c 12 = .8 c 13 = .l c 14 =o 

c21 = .9 C22 = 0 C23 = 0 c24 = .3 
c31 = 0 c32 = 0 c33 = .9 c34 = .2 
c41 = 0 c42 = .5 c43 = 0 C44 = .8 

Let Mt = {ml,m3}. Th en the relative likelihood of three 
covers of M+, {d,}, {d2,d3}, and {dl,d2,d3}, are calculated 
as follows. 
L,({d,}, {m1,m3}) = c 11’ c 13= .2 . .l = .02 
L(Wh hmd) = (1 - c 12).(1 - c 14) = (1 - .8)*1 = .20 

Pl 
L3(Wj -hmd) = - = 

1 - Pl 
.Ol. Similarly, 

W&J& 1 ml,m3}) = (1 - (1 - c2J(l - c31)) . 

(1 ~ (1 - c&*(1 - Cam)) = .9 . .9 = .81 
Lz({d,,d,}, {ml,m3}) = (1 - ~24) (1 - ~34) = .7 . .8 = .56 

L(&,d& hm3)) = p2 * 
P3 

l- P2 
- = .028. Similarly, 
l- P3 

Ll({dl,d2,d3}, {ml,md) = (1 - (1 - cdl - cd1 - ~31)) . 
(1 ~ (1 - c 13).(1 - ~23).(l - ~33)) = .84 

L2({d1,d2,d3}, {ml,m3}) 
= (1 - C 12) ' (1 - C 24) ' (1 - C34) = .ll 

UbW,J,L { ml,m3}) = .00028. 
Thus, WU { m1,m3}) = .00004, WW3h hd) = 
.013, and WW2rd31, 1 mlrm3}) = .000026, by Eq. 2a. 
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4. Hypothesis Plausibility 

As noted earlier, parsimonious covering theory (as 
well as the work of others cited earlier) captures the 
basic notion used in many abductive problem-solvers that 
a set of disorders DI is an “explanation” (plausible 

hypothesis) for M+ if (1) D, covers M+, and (2) I)h,i~ 
“parsimonious”. We now examine 

intuitive/subjective criteria using the measure L(D,, M+) 
given above, focusing on the question of when a set of 
parsimonious covers includes the most probable cover. 

First, suppose a hypothesis D, & D is not a cover of 
M+. Then there exists at least one present manifestation, 
say mj E M+, that is not covered by DI, i.e., for all 

4~ D,, <mj ,d; > $ C SO cij = 0. Then, L,(DI, M+) = 
0 and hence L(DI, M+) = 0 (by Eqs. 2b and 2a). That 
is, any DI & D which does not cover M+ will have zero 
relative likelihood, and P(D, ) M+) = 0. It thus follows 
that any most likely set of disorders D, must be a cover 
of M+, and that in search for plausible hypotheses only 
those sets that are covers of M+ need to be considered 
(an important savings because usually a large number of 
DK in zD are not covers). 

The more difficult issue in hypothesis evaluation, 
however, has been precisely defining what is meant by 
the “best” or “most plausible” explanation for a given 

set of facts [Thagard78] [Josephson821 [Reggia85c] 
[Peng86a]. In th e context of diagnostic problem-solving, 
it seems reasonable to correlate such subjective and ill- 
defined concepts with likelihood, i.e., to prefer diagnostic 

hypotheses that are more likely to be true based on their 
posterior probabilities. If one accepts P(DI ] M+) as a 
measure of the plausibility of DI, it then becomes possi- 

ble to objectively analyze the conditions under which 
different criteria of parsimony seem plausible. Three such 
criteria were defined in section 2, namely, relevancy, 
irredundancy, and minimality, and we now wish to con- 
sider if and when these criteria identify the most prob- 

able diagnostic hypothesis. 

Let DIE D be a cover of M+ in a diagnostic prob- 
lem P = <D,M,C,M+>. For any dk E D - D1, it follows 
from Eqs. 2b - d that 

Ldb W >, M+) 

= LP,, M+) . I-I (l- ckj + h) 

ml Eeffects(dk )nM+ 
Pal 

where P(mj]Dr)=l- n (I-cij)#O for all mjE 
d,E DI 

M+ since D, covers M+. 

For bid& U{4 h M+) and L3(DIU{ dk }, M+), it is similarly 
the case that 

L,(b U{ d,, 1, M+) = L(D, 9 M+). n (1 - ckj I- 
m, Eeffects(dc )-M+ WI 

LdJh u@k 1, M+) = LPI, M+) . e- 144 

Eqs. 4a - c’ directly support the analysis of the three 
types of parsimony in question by permitting the direct 
comparison of L(D, , M+) and L(DI u{dk }, M+). 

relevant covers: Let D1 be a relevant cover of M+, 
so by definition D, covers M+ and DI E causes(M+). Let 

dk $ causes(M+), i.e., dk is irrelevant to M+, so dk $ DI . 
Then, DI U{ dk } is an irrelevant cover of M+. For such a 

dk , all of its manifestations are known to be absent, so 
using Eqs. 4a, b and c, it follows from the preceding that 
L(& ‘Jbi 1, M+) 

= ( n 
Pk 

I@,, M+) 
(l - ckl 1) . - 

m, Eeffects( dt ) 1 - Pk 

because L,(D1 u{dk }, M+) = L1(D1, M’). 

In most real world diagnostic problems, pk is gen- 
erally very small. For example, in medicine pk < 10-l 
even for very common disorders in the general population, 
such as a cold or the flu, and is much much smaller 
(e.g., lo-‘) for rare disorders. Thus, pk /(l - pk) << 1 

usually. The product of (1 - ckl )‘s is also less than 1, and 
is often much less since it is a product of numbers less 
than one. Thus, in most applications, 
L(D,u {dk }, M+)<<L(D,, M+) making an irrelevant cover 
much less likely than any relevant cover it contains. This 
effect is magnified as a cover becomes “more irrelevant”, 
i.e., as additional irrelevant disorders dl are included. 
Thus, generally, it is only necessary to generate relevant 
covers as hypotheses for which L(D,, M+) is calculated, 
and in most real world problems this represents an enor- 
mous computational savings (typically most covers are 
irrelevant). The only exception would occur when pk is 
fairly large, and dk has few, weakly causal associations 
with its manifestations. In particular, L(D,u {dk }, M+) 
would exceed L(DI, M+) where dk was an irrelevant 
disorder only if pk > 1 / (1 + n (1 - ck.1 )) > 0.5, 

m,~effects(d~) 

a distinctly atypical situation as noted earlier. An 
interesting consequence of this result is that if M+ = 0, 
since 0 is the only relevant cover of such a M’, the pro- 
babilistic causal model generally entails “no disorders are 
present” as the only reasonable explanation, provided that 
pi 5 0.5 for all di E Dr. This is consistent with parsi- 
monious covering theory and with intuition. 

irredundant covers: If DI is an irredundant cover 
of M+, then by definition no proper subset of DI covers 
M+. For dk $! D1 but dk E causes(M+), D,u {dk ) is a 
redundant but relevant cover of M’. From- Eqs. 4a - c, 

LdDdJ{dk >I M+) > 1 and L,(Dd{dk h M+) < 

LIPI, M+) - L,fD, . M+I - 
1. If 

pk << 1, 
then Ls(b U{dk >t M+) -1’ ’ Pk ’ 

LOI, M+) 

<< 

1 - Pk 

general it is likely that the decrease in LZ and L3 
by adding dk will compensate for the increase 
because pk is typically small. As example 2 
although adding d, into irredundant cover bLd,) 
increases L, from .81 to .84, it reduces L2 from .56 to .ll 
and L3 from .028 to .00028, thus making the redundant 
but relevant cover {dl,d2,d3} much less likely than the 
irredundant cover {d,,d,} (.000026 vs. .013). Therefore, if 
the prior probabilities pi << 1 for all di E D as in many 
applications, the most probable covers of M+ are likely to 
be irredundant covers, consistent with intuitive arguments 
made in the past [Nau84] (Reggia851 [Peng86a] [Reiter85] 
[deKleer86). 

1. In 

caused 
in L1 

shows, 

However, more care must be applied in restricting 
hypothesis generation to just irredundant covers. A care- 
ful analysis of Eqs. 4a - c should convince the reader 
that a redundant but relevant cover D,u {dk } might 
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occasionally be more likely than D, if dk is fairly com- 
mon and ckj >>P( mj 1 D, ) for some mj E M+. This is an 
intuitively reasonable result, and it represents an insight 
concerning the nature of “parsimony” that was only 
recognized after developing the probability calculus sum- 

marized in Section 3. However, even in the situation 

where some redundant cover is more 
irredundant cover it contains, such a 

probable than an 
redundant cover 

might still be less probable’ than the most probable 
irredundant cover. For instance, in example 2, a redun- 
dant cover {dl,dt} has relative likelihood I,( { d 1, d 3}, 

{m i,me}) = .000064 which is greater that of {d 1}, but 
still less than that of { d,,d,} which is an irredundant 
cover. 

minimal covers: It is possible to identify situations 
where minimal cardinality is a reasonable criterion for 
hypothesis generation. For example, if, for all d;E D, the 
prior probabilities are pi << 1 and are about equal, and 
the Cij 'S are fairly large in general, then a careful 
analysis of Eqs. 4a - c shows that the most probable cov- 
ers of M+ are likely to be minimal covers. In this situa- 
tion, the ratio between L(D1, M+) and L(D,, M+) for two 
different covers D, and D, of M+ will be dominated by 

L(DJ ,- M+) - 
the ratio 

= 
(pi) ID,1 - IDfI which 

LADI, M+) l - Pi 
would be very much smaller than 1 if 1 DI 1 < 1 DJ 1 . 
Unfortunately, in many real-world diagnostic situations 
the assumptions needed to make minimality a useful par- 
simony criterion are violated. In medicine, for example, 

prior probabilities among diseases and causal strengths 
vary by as much as 106, and therefore minimality is gen- 
erally not a reasonable criterion to adopt to limit 
hypothesis generation. 

5. Discussion 

BY applying a form of Bayesian classification 
extended to work in th e framework of parsimonious cov- 
ering theory, we have been able to examine various 
intuitive/subjective criteria for hypothesis plausibility in 
an objective fashion. Consistent with intuition and con- 
cepts in parsimonious covering theory, probability theory 
leads to the conclusion that a set of disorders must be a 
cover to be a plausible hypothesis. Further, conditions 
can now be stated (Section 4) for when various criteria of 
“simplicity” are reasonable heuristics for judging plausibil- 
ity. For example, minimal cardinality is only appropriate 
to consider when all disorders are very uncommon and of 
about equal probability, and causal strengths are fairly 
large. If some disorders are relatively much more 

common than others, or if causal strengths in some cases 
are fairly weak, using minimal cardinality as a heuristic 
to select plausible diagnostic hypotheses is inadequate. In 
this latter situation, typical of most real-world problems, 
the criterion of irredundancy may be appropriate. 

Irredundancy is generally quite attractive as a plausi- 
bility criterion for diagnostic hypotheses, and a formal 
algorithm (with proof of its correctness) for generating all 
irredundant covers of a set of given manifestations M+ 
has recently been described [Peng86a]. Unfortunately, 
there are two difficulties with directly generating the set 
of all irredundant covers for consideration as diagnostic 
hypotheses. First, this set may itself be quite large in 
some applications, and may contain many hypotheses of 

very low probability. Second, and more serious, it may 
still miss identifying the most probable diagnostic 
hypothesis in some cases (see Section 4). This latter 
difficulty is an insight concerning plausibility criteria that 
has not been previously recognized. 

Fortunately, both difficulties are surmountable. A 
heuristic function based on a modification of L(D[, M+) 

can be used to guide an A* -like algorithm to first locate 
a few most likely irredundant covers for M+. Then, a 
typically small amount of additional search of the “neigh- 
borhood” of each of these irredundant covers can be done 
to see if any relevant but redundant covers are more 
likely. An algorithm to do this and a proof that it is 
guaranteed to always identify the most likely diagnostic 
hypothesis has been presented in detail elsewhere 
[Peng86b]. 

There are a number of generalizations that could be 
made to the results presented in this paper, and we view 
these as important directions for further research. Our 
use of Bayesian classification with a causal model assumed 
that disorders occur independently of one another. In 
some diagnostic problems this is unrealistic, so a logical 
extension of this work would be to generalize it to such 
problems. Some work has already been done along these 
lines in setting bounds on the relative likelihood of 
disorders with Bayesian classification [Cooper84]. In addi- 
tion, we have adapted only one method of ranking 
hypotheses (Bayes’ Theorem) to work in causal domains 
involving multiple simultaneous disorders. It may be that 
with suitable analysis other approaches to ranking 
hypotheses could also be adopted in a similar fashion 

(e.g.7 Dempster-Shafer theory [Dempster68] [Shafer76]). 
Some initial work along these lines with fuzzy measures 
has already been done [Yager85]. 
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