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1. Introduction

Predicting the Earth’s future climate is an important part of

climate science (cf. CCSP, 2008; Shukla et al., 2009).1 This task

is undertaken by combining scenarios of socioeconomic

change with highly complex models that simulate the

atmosphere and other key Earth systems. Many believe that

in order to be useful, these general circulation models (GCMs)

will need to provide accurate, reliable, and timely results on a

regional to local scale (for example, see a recent declaration by

the World Modelling Summit for Climate Prediction (Shukla

et al., 2009)). Some question whether climate prediction is a

necessary ingredient for decision making,2 but prediction-

based decision making remains a powerful motivator for

present and future investments in climate science. As the

promised role of GCMs shifts from ‘‘demonstrating warming’’

to supporting important regional and local decisions with

predictive models, uncertainty will rise, and so will the

political stakes.

This paper focuses on a conceptual issue surrounding

climate models and the interpretation of their results that is

also relevant to science policy and epistemology. In short, we

note that GCMs are commonly treated as independent from

one another, when in fact there are many reasons to believe

otherwise. The assumption of independence leads to in-

creased confidence in the ‘‘robustness’’ of model results when

multiple models agree. But GCM independence has not been

evaluated by model builders and others in the climate science

community. Until now the climate science literature has given

only passing attention to this problem, and the field has not

developed systematic approaches for assessing model inde-

pendence.
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Climate modelers often use agreement among multiple general circulation models (GCMs)

as a source of confidence in the accuracy of model projections. However, the significance of

model agreement depends on how independent the models are from one another. The

climate science literature does not address this. GCMs are independent of, and interdepen-

dent on one another, in different ways and degrees. Addressing the issue of model

independence is crucial in explaining why agreement between models should boost confi-

dence that their results have basis in reality.
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In raising the question, ‘‘what does it mean when climate

models agree?’’ this paper aims to:

1. demonstrate that this question is of crucial importance to

climate science;

2. point out that the question has nonetheless been largely

ignored by climate scientists;

3. evaluate what few attempts have been made to address the

question thus far; and

4. discuss what it would take to address the question more

thoroughly.

As we make clear below, we cannot provide a definitive

answer to the question raised in our title. We argue only that a

satisfactory answer must provide an account of the indepen-

dence of models from one another, and that coming up with

such an answer will take the combined efforts climate

scientists, and perhaps scholars in other fields as well.

In the next section we spell the independence problem out

in detail, and in Section 3 we discuss the few instances in

which the climate literature has addressed the topic. In

Section 4 we use the history of GCM development, along with

some contemporary examples of particular model studies to

illustrate various ways climate models may or may not be

independent from one another. In a final section, we address

the broader significance of this issue for climate science, and

draw conclusions. The main lesson is that agreement of model

results is not necessarily robustness because agreement

without independence is not confirmatory. It is crucially

important for climate policy, and climate science policy, that

modelers give attention to the relationships between the sets

of models they consider.

2. Models and reality

The logistics of building GCMs that simulate the behavior of

complex interacting natural systems with multiple feedbacks

give rise to an important and well-known problem: in order to

build a tractable model, it is often necessary to make dramatic

assumptions and simplifications. This is a reality for any

numerical model of a complex system. Examples from climate

science are the continuum assumption,3 and the assumption

that landmasses on Earth reach only 3.5 m in depth, as in the

GISS model.4 These assumptions may be adequate, appropri-

ate, and even necessary for modeling purposes, but they are

clearly false. Simplifying assumptions are the price of

tractability, and in some cases, they are also necessary for

precision.

One challenge facing modelers and policy makers is to

understand the ways in which the inherent limitations on

models impact their relationship with reality. As population

biologist Richard Levins (1966, p. 421) has pointed out, many

modelers of biological systems generally do not even try to

capture the world as it is, because doing so would mean ‘‘using

perhaps 100 simultaneous partial differential equations with

time lags; measuring hundreds of parameters, solving the

equations to get numerical predictions, and then measuring

these predictions against nature.’’ Furthermore, Levins notes,

more realistic models would require attention to many more

salient parameters than we can measure, as well as the use of

equations that have no analytic solutions and no outputs that

we know how to understand. According to Levins, these

constraints leave mathematical population biologists working

at some distance from the phenomena they are studying, and

creates the problem that it is sometimes difficult to know

whether model outputs reflect their system of study appropri-

ately or depend instead on the ‘‘details of the simplifying

assumptions’’ (Levins, 1966, p. 423). He has written ‘‘. . .we

attempt to treat the same problem with several alternative

models each with different simplifications but with a common

biological assumption. Then, if these models, despite their

different assumptions, lead to similar results, we have what we

call a robust theorem which is relatively free of the details of the

model. Hence our truth is the intersection of independent lies’’

(Levins, 1966).

The challenges described by Levins also face climate

modelers, whose GCMs are at a far enough remove from reality

that it is sometimes difficult to discern whether particular

results are artifacts of the modeler’s practice or whether the

model captures and explains real patterns and processes.

Indeed, GCMs arguably have more parameters, more equations

in need of solutions, and more solutions that have to be tested

against nature than do the models of population biology that

Levins discusses.

Climatemodelers,ofcourse,arewellawareofall this, sothey

not only compare their model results against observations, they

also check their models against other models. In a recent paper,

for instance, Seager et al. (2007) assert that eighteen of nineteen

general circulation models (GCMs) agree that the Southwestern

UnitedStateswillexperience increasedaridityand drought over

the next one hundred years. The notion that agreement across

models increases confidence in particular aspects of model

projections is common. Take, for instance, this statement about

climate warming from the fourth assessment report of the

Intergovernmental Panel on Climate Change (IPCC AR4):

. . .models are unanimous in their prediction of substantial

climate warming under greenhouse gas increases, and this

warming is of a magnitude consistent with independent

estimates derived from other sources, such as from

observed climate changes and past climate reconstruc-

tions. (Solomon et al., 2007 p. 601)

Here the IPCC authors are reporting agreement among

models, and counting this agreement as one reason (among

3 Commonly used in fluid mechanics, the continuum assump-
tion ignores the fact that physical matter is actually made up of
individual particles that collide with one another, and assumes
that properties such as pressure and temperature are consistent.
This is necessary for the application of the most common mathe-
matical equations, without which problem solving would in many
cases be impossible.

4 Information on the model developed at the Goddard Institute
for Space Studies, along with other models referenced throughout
this paper can be accessed through the Program for Climate Model
Diagnosis and Intercomparison (http://www-pcmdi.llnl.gov/ipcc/
model_documentation/ipcc_model_documentation.php). That
website includes specifications for all 24 of the models used in
the IPCC’s Fourth Assessment Report.
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many others) to believe that the models are correct in their

projections. In a rough survey of the contents of six leading

climate journals since 1990,5 we found 118 articles in which

the authors relied on the concept of agreement between

models to inspire confidence in their results. The implied logic

seems intuitive: if multiple models agree on a projection, the

result is more likely to be correct than if the result comes from

only one model, or if many models disagree.

As the above quote from Levins indicates, this logic only

holds if the models under consideration are independent from

one another. In Levins’ terms, using multiple models to

analyze the same system is a ‘‘robustness’’ strategy. Every

model has its own assumptions and simplifications that make

it literally false in the sense that the modeler knows that his or

her mathematics do not describe the world with strict

accuracy. When multiple independent models agree, however,

their shared conclusion is more likely to be true. As Levins puts

it, ‘‘our truth is the intersection of independent lies.’’

By contrast, the more dependent the models are on one

another, the less one should be impressed by their intersecting

results. No one is or should be surprised when very similar

microscopes yield very similar observations after being trained

on the same slide. This consideration has not gone completely

unnoticed among climate modelers. In an extensive review of

climate model reliability, Raisanen (2007, p. 9) laments the

‘‘limited number of quasi-independent climate models,’’ noting

later that ‘‘the risk that the uncertainty inthereal world exceeds

the variation between model results is obvious: even if all

models agreed perfectly with each other, this would not prove

that they are right’’ (see also Tebaldi and Knutti, 2007).

A common response to this problem is to compare model

results to past climate observations, but this measure of

performance presents its own set of analytical problems. A

match between model results and observations guarantees

neither an ability to predict future system behavior, nor that

the model accurately captures underlying causal mechanisms

(Oreskes et al., 1994; Tebaldi and Knutti, 2007).6 While there are

many ways to assess the performance of a GCM, there is little

consensus on which are most effective, or on how to

determine the most appropriate measures for a given set of

circumstances (Gleckler et al., 2008).

As evidenced in the results of our literature search

(mentioned above), and its use by the IPCC, agreement across

models has become an important tool for evaluating the

robustness of model outputs. Many see agreement among

models as support for the assumption that they represent the

world in the relevant ways.

3. Robustness in the GCM literature

How much and in what ways should models differ from one

another for modelers to have increased confidence in

convergent results?7 What does it mean to say that a model

or set of models is robust? The climate modeling literature has

devoted little attention to the problem of model interdepen-

dence. We have found no discussion of the ways and degrees

to which climate models should be independent of one another

for agreement among them to constitute confirmatory

evidence of their outputs. Though some have recognized this

as an issue (e.g. Abramowitz, 2010; Collins, 2007; Raisanen,

2007; Tebaldi and Knutti, 2007), we have found only one

limited attempt (Abramowitz and Gupta, 2008, more on this

later) at developing a method for evaluating the independence

of models. The IPCC’s Fourth Assessment Report only brushes

against concepts related to robustness and independence.8

Below we summarize three instances in which scientists

have addressed model independence: (1) the ensemble

approach, which assumes that models differ due to errors

in coding and processing (e.g. ‘‘truncation errors’’); (2) in the

use of differing model outputs to indicate model indepen-

dence; and (3) an argument that the range of model

parameterizations should accurately reflect current uncer-

tainties surrounding those parameters.

3.1. Ensembles

For the most part, discussions of model independence occur in

the context of model ensembles. Ensembles, in which results

are averaged across a group of models, are increasingly used

for their ability to reproduce observed climate behavior

accurately (Hagedorn et al., 2005; Lambert and Boer, 2001;

Palmer et al., 2004; Wang and Swail, 2006). As with comparison

of model results (such as with the Seager et al. study

mentioned previously), the ensemble approach relies on the

assumption of independence among models. Hagedorn et al.

(2005) describe this assumption:

Every attempt to represent nature in a set of equations,

resolvable on a digital computer, inevitably introduces

inaccuracy. That is, although the equations for the

evolution of climate are well understood at the level of

partial differential equations, they have to be truncated to a

finite-dimensional set of ordinary differential equations, in

order to be integrated on a digital computer. . . The basic

idea of the multi-model concept is to account for this

inherent model error in using a number of independent and

skilful models in the hope of a better coverage of the whole

possible climate phase space.

This account implicitly assumes model independence

exists due to different cut-off errors resulting from the coding

of differential equations within each model. But this assump-

5 Geophysical Research Letters; the Journal of Geophysical Re-
search-Atmospheres; the Journal of Atmospheric Sciences; the
Journal of Climate; Climate Dynamics; and Climatic Change.

6 Indeed, models, or their subcomponents, may be ‘‘tuned’’
specifically to match past observations. See discussions of tuning
in Tebaldi and Knutti (2007).

7 Simply assessing whether or not (or the degree to which)
models agree with one another is difficult and complicated. See
Raisanen (2007), and citations therein for more on this. It is also
worth noting that as models become more complex, so too does
the task of assessing their independence. With simple models one
can see much more easily the ways and degrees to which models
are independent (IPCC, 1997).

8 See the discussion and justification of the use of multi-model
ensembles in IPCC AR4 (Solomon et al., 2007, pp. 805–806).
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tion ignores the important question of whether the use of

different coding schemes, with correspondingly different

truncation errors, is enough to constitute independence.

Truncation error is not the only significant source of error

and uncertainty within our understanding of the climate, nor

is it the sole dimension along which models can be deemed

independent.

The focus of our argument is on modelers’ claims that

agreement among models increases the robustness of their

results. The ensemble approach would benefit from a clearer

account of model independence, which is only implicitly

assumed in the ensemble literature.

3.2. Independence based on differing results

In one of the few direct examinations of model independence,

Abramowitz and Gupta (2008) argue that, given that models

may share similar biases, the use of multiple model ensembles

should involve some understanding of the extent to which

models differ from one another, and thus the extent to which

they may share the same biases. To demonstrate, they analyze

different land-component models using a state-space ap-

proach, examining how each model behaves under different

combinations of initial conditions. Abramowitz and Gupta

define a ‘‘distance,’’ or degree of independence between

models based upon the divergence of their outputs. This

enables a quantitative measure of the ‘‘distance’’ between the

different land-use models examined in the study.

The underlying motivations of Abramowitz and Gupta are

directly in line with our central argument. However, their

solution only evaluates differences in model results, rather

than differences in the way the models represent the world

and its causal structure. They essentially treat models as black

boxes, ignoring the causal reasons for disagreement between

models. It is possible that two models could agree with respect

to outputs despite their having different causal assumptions,

but such a result, using this approach, would falsely indicate

model ‘‘dependence,’’ because these models would yield the

same output despite the fact that they make different and

possibly conflicting claims about the underlying mechanisms.

A more thorough analysis of why models disagree should

complement the output-oriented independence metric of

Abramowitz and Gupta with an understanding of the causal

assumptions of the models, though we recognize that the

technical and cognitive difficulties involved in doing so might

be significant.

Abramowitz and Gupta encounter another difficulty in

balancing concerns for independence with concerns to

accurately predict known observations. If two models are

accurate in predicting observed results, then they would be

deemed dependent on one another by an outcome-oriented

metric, and thus the significance of their agreement would be

minimized. As Abramowitz and Gupta acknowledge, it is a

difficult task to balance concerns for independence with

concerns for performance. To try to resolve this, they state

that the utility of a given model is a function of the model’s

performance multiplied by how different it is from all of the

other models, divided by the utility given for all of the other

models. Again, this makes the problem clearer but does not

resolve it. If two models have a large ‘‘distance’’ between them

because their outputs disagree in a number of hypothetical

cases, but the models agree with observed results, does this

increase confidence that their agreement is significant? Or

does it indicate that their agreement might be a special case (or

perhaps the result of error)? Looking at where the models

diverge under different possible conditions and understand-

ing why they disagree would provide the key to understanding

the significance of their agreement.

3.3. Parameters and uncertainty

Discussion by Tebaldi and Knutti (2007) points to a third way of

examining independence among multiple models, by focusing

on the different parameters that are encoded within models.

They raise a concern that the parameters for a given process

within a GCM may not represent the full range of scientific

uncertainty about that process:

Once scientists are satisfied with a model, they rarely go

back and see whether there might be another set of model

parameters that gives a similar fit to observations but

shows a different projection for the future. In other words,

the process of building and improving a model is usually a

process of convergence, where subsequent versions of a

model build on previous versions, and parameters are only

changed if there is an obvious need to do so. . .[I]t is probable

that the range covered by the multi-model ensemble covers

a minimum rather than the full range of uncertainty.

(Tebaldi and Knutti, 2007, p. 2069)

Tebaldi and Knutti point to different parameters as sources

of independence among models, suggesting that it could be

possible to choose different parameters within model ensem-

bles in ways that better reflect the scientific uncertainties

surrounding model parameters. An example of this is the

perturbed physics ensembles approach, in which very large

ensembles are used to investigate the effects of slight changes

in parameters on model output (e.g. Ackerley et al., 2009;

Stainforth et al., 2005). Pushing different models to reflect

different probability distributions for specific parameters can

generate more context for understanding uncertainty in

model predictions, and perhaps even differences across GCMs.

However, as Tebaldi and Knutti recognize, this cannot fully

address the problem, as it ignores structural uncertainties

stemming from the somewhat subjective art of selecting

parameters for inclusion in the model.

The treatment of models as independent from one another

is widespread. Yet this brief review of the literature reveals

only a limited recognition that this assumption needs

investigation, and an almost complete absence of methods

for doing so. The nascent existing literature on model

independence supports our argument that the climate science

community needs to address this issue more explicitly.

4. Climate models in historical and conceptual
perspective

In addition to these concerns about independence raised by

climate modelers, both the history of climate modeling and a
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look at cases of ensemble-modeling show further reasons for

skepticism about the independence of many GCMs from one

another, and for a better conceptual grasp on independence. In

the next subsection we draw on the work of Paul Edwards to

offer a quick history of climate modeling, pointing to some of

the ways the various projects shared data, personnel, and

computer code with one another. Sections 4.2 and 4.3 contain

detailed examinations of two ensemble-modeling exercises

and shift concern about independence in the abstract toward a

discussion of independence in particular cases.

4.1. The history of GCM development

While serious attempts at numerical weather prediction date

from early in the 20th century, working GCMs were not

developed until the mid-1950s. These early models were

apparently developed more or less independently of one

another, and all were based on based on Lewis Fry Richard-

son’s simplified versions of Vilhelm Bjerknes’ seven ‘‘primitive

equations’’ (Bjerknes, 1921). These equations could, in princi-

ple, capture atmospheric physics well enough to predict

general circulation. By the 1960s, there were four efforts to

develop realistic GCMs, two of which eventually became

institutionalized as the present-day Geophysical Fluid Dy-

namics Laboratory and the National Center for Atmospheric

Research. In the next decades, many more modeling groups

developed around the world, but crucially, they did so in close

relationships with the existing groups. According to Paul

Edwards (2000, p.79):

GCMs and modeling techniques began to spread by a

variety of means. Commonly, new modeling groups began

with some version of another group’s model. Some new

groups were started by post-docs or graduate students

from one of the three original GCM groups. Others built new

models from scratch.

By the mid-1980s, still more groups were building GCMs

with increasing levels of sophistication. GCMs then included

coupled ocean–atmosphere models, representations for

clouds, higher resolution grid scales, and new, faster numeri-

cal methods for writing and solving equations. Building GCMs

de novo, however, would have been expensive and very time

consuming, so virtually no one did. De novo codings remain

rare.

The history of GCMs indicates that a few prominent

research groups have contributed greatly to defining the field.

Some of the historically prominent modeling groups still exist

today, along with new groups from around the world, and

have made major contributions to the IPCC-AR4. The long-

standing and tight relationships among many GCMs, com-

bined with the constant interaction among researchers at

contemporary modeling centers, raises questions about

independence and interdependence. If these models are

independent, it is not because they are separately housed or

administered: modeling groups often share ideas, data,

personnel, and computer code. At the same time, increased

collaboration among scientific research groups may aid in the

generation of new and different approaches, and it may

encourage criticism and increased accuracy in different

models. We cannot fully answer what the overall effect is,

but it is worth highlighting that the societal interconnections

among research groups may add to and at the same time take

away from the independence among different modeling

groups.

4.2. GCMs used in the IPCC fourth assessment report
(IPCC-AR4)

IPCC’s AR4 devotes considerable attention to models, their

evaluation, and their results. But it does not discuss which

kinds and degrees of differences across models point to the

kind of model independence that would make agreement

between model predictions significant. This presents a

problem to anyone who would make use of model results,

whether for further research, or for important policy deci-

sions. The authoritative and comprehensive account of

climate science gives very little attention to model indepen-

dence beyond citing a few articles relating to the justification

of multi-model ensembles. Directly examining the models

used in the IPCC-AR4 strengthens the argument that model

independence needs to be more thoroughly explored. The

IPCC AR4 drew upon the results of the 23 GCMs, listed in

Table 1. Analysis of the table and the models it references

reveals several ways in which the models are both similar and

dissimilar: there are variations in grid resolution (though some

are the same); some model the basic physical equations using

different methods (finite differencing as against the spectral-

transform approach), though some do it the same way; there

are probably also subtle differences in coding, though many

models use the same or very similar basic code; some models

use different parameterizations for specific phenomena, and

sometimes differ in the choice of which physical variables to

include.

A look at forcing variables included in the AR4 GCMs

yields similar results. In Table 2 one can see that some

features, such as forcing from the main greenhouse gases,

are shared across almost all models. Greater differences

occur across representations of aerosol forcings, with

considerable variation in the components included, and

the manner in which they are represented. For example,

almost all models include sulfate, while very few have

incorporated urban aerosols.

In addition to these prima facie similarities and differences,

deeper study of the components of the models raises further

questions about independence. Two models considered from

the Hadley Centre for Climate Prediction and Research,

UKMO-HadGEM1 and UKMO-HadCM3 are very closely related:

the former is a newer version of the latter and some of the

major personnel overlap. The same is true in the case of the

two models (PCM and CCSM3) from the National Center for

Atmospheric Research. Other models, like those considered

from JAMSTEC and CGCM3.1, are high- and medium-resolu-

tion variants of each other, meaning that their parameteriza-

tions and basic approaches are identical, but they differ in

their spatial resolutions. Still others, like GFDL-CM2.0 and

GFDL-CM2.1, appear to vary with respect to discretization

schemes for advection, damping schemes, and the value of

time steps used for ocean components, but to share everything

else.
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4.3. Regional case studies

Though we have focused so far on the IPCC and on global

climate change, regionally focused studies drawing on the

IPCC models are becoming common. The recent paper on

aridity and drought in the American Southwest (Seager et al.,

2007) mentioned in Section 2, for instance, received a great

deal of attention in the popular media, especially in the

American Southwest. That paper uses agreement among

models as strong evidence for an impending transition to a

more arid regional climate. This ‘‘broad consensus,’’ the

authors note, has implications for water and development

policy. Indeed it does, but consensus and unanimity can be

achieved in more than one way. What agreement means in

this case is particularly important in the light of a similar study

by (Christensen and Lettenmaier, 2006) that points to a slight

decrease in overall precipitation (on the order of 1%), but also

projects substantial precipitation increase during the winter

months. The relationship of precipitation to climate change in

the Southwest remains poorly understood, and which set of

results is most convincing should depend in part on the case

that can be made for the independence of models from one

another in the Seager et al. study.

Regional studies also pose a model-selection problem.

Often, studies of particular regions or processes cannot make

use of the full set of AR4 model output due to resource

constraints or, more commonly, because some models

simply do not represent the system under examination in

an appropriate manner. In these cases, researchers often

proceed with a selection of models that best fit the study at

hand.

Such is the case in a study reported by Kripalani et al. (2007),

which investigates the effects of climate change on the South

Asian summer monsoon. Beginning with twenty-two coupled

GCMs, the authors argue that ‘‘confidence in climate model

regional precipitation projections will depend on how well the

models are able to simulate the 20th century monsoon

rainfall.’’ Thus, through a selection process using statistical

procedures to identify the models best suited to their study,

they arrive at a group of six models (in Tables 1 and 2: BCCR-

BCM2.0; CGCM3.1(T47); CNRM-CM3; ECHAM5/MPI-OM; MIR-

OC3.2(hires); and UKMO-HadCM3), all of which project an

increase in mean summer monsoon precipitation as a result of

long-term climate change.

Our question here is the same as before: what significance

does agreement among the six selected models have? Did the

process of narrowing down to a subgroup of model results

eliminate or preserve the independence necessary to add

robustness to the study’s findings? We cannot answer this

question comprehensively. A preliminary comparison based

on the data in Tables 1 and 2 does not reveal any obvious

interdependencies, but there are many other ways to investi-

gate this set of models (Gleckler et al., 2008). For example, error

profiles resulting from various probabilistic and deterministic

skill measures, as described in Hagedorn et al. (2005), would be

another approach. In any case, the authors would strengthen

their case for increased confidence with a clear account of

what these six models share that would make them useful for

this study, and an argument for independence despite this

overlap.

In another example, Wang and Overland (2009) investigate

Arctic sea ice extent using a subset the IPCC AR4 models. Their

selection among the models relies on an ‘‘observational

constraint,’’ which eliminates any model lying outside a

certain range in its ability to simulate past sea ice extent. This

strategy yields six models (as did the monsoon study

mentioned above), which are then used to predict future

sea ice extent. This approach is justified because: a.) confi-

dence in IPCC projections is related to the ability of models to

reproduce past observations, and b.) eliminating outlier

models will reduce uncertainty in future projections.9 The

authors do not offer a causal explanation of why these models

can be expected to perform better than the others with respect

to sea ice extent,10 but do point to similarity in their results as a

source of confidence in the predictions.

Only one model is shared between the two studies

described above (Kripalani et al., and Wang and Overland),

each of which settled on six models that best reproduce the

processes under investigation. This alone should raise con-

cerns about such studies: given that these processes play out

in the same open, highly complex, and interconnected system,

what is the rationale for using one set of models to predict

future sea ice extent, and an almost entirely different set to

predict monsoon behavior? It may be reasonable to assume

that there is something shared by each subset of models which

makes them suitable to the task. How, then, can the authors

treat them as independent?

We readily acknowledge that different models have

strengths and weaknesses when it comes to modeling

particular processes in particular regions. The question here

relates to the use of groups of models, and the comparison of

their results. The results of each of these studies may not be

wrong, but increased confidence requires an account of

independence within each set of models, and an explanation

of model selection that takes into account the underlying

causal structure of the models.

The central point of the preceding analysis and discussion

is that there are compelling reasons to be concerned about the

independence of models that share histories, computer code,

causal assumptions, and other essential features if we are to

use agreement across models as a reason to believe that our

models are correct or approximately correct. Text Box 1

presents a list of the various dimensions we have identified,

along which GCMs might be examined in an assessment of

independence. This is a preliminary list, no doubt subject to

further additions and modifications. If we are to understand

the relationships between models, and between models and

reality, a great deal more work will need to be done. Our task so

far has been to raise a simple but crucially important question

that should accompany studies such as those highlighted

above: how independent are these models from one other?

In tables and figures throughout the literature analyzing

GCM output, one regularly sees distinct, apparently indepen-

dent statistics or graphical elements for each model, when

9 Though it does reduce the spread among model results, it is far
from clear how such an approach would reduce overall uncertain-
ty.
10 They note only that three of the six contain a ‘‘sophisticated
sea ice physics and dynamics package.’’
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some may be, for all intents and purposes, either the same or

at least highly interdependent. For agreement to lead to

robustness, it must be at least possible for the models to

disagree.

5. Conclusions: toward an interdisciplinary
understanding of models and their meanings

Understanding agreement among multiple models is one area

in which conceptual clarity is crucial, and more work is

needed. We have argued here that there are reasons to be

concerned about multi-model analyses that claim robustness

because there is presently no consensus on how to evaluate

such claims. We have not offered a metric of our own because

we recognize that we are pointing to a hard problem. Indeed,

following Gleckler’s et al. (2008) survey of model performance

measures, there probably is no single metric of independence

that will prove appropriate in all cases. We hope these

arguments encourage those who make robustness claims to

pay attention to the relationships between the models in their

analyses and to address the ways in which the models they

study are independent of one another. Our argument is not

that the IPCC’s models are incapable of supporting robustness

claims or that regional studies that rely on multi-model

ensembles do not withstand scrutiny. We are arguing that the

situation is worse than this, because there is presently no way

to judge the quality of analyses based on multiple models.

A recent ‘‘Synthesis and Assessment Product’’ by the US

Climate Change Science Program makes a distinction between

the quality of climate models and our confidence in their

ability to make accurate projections with basis in reality (CCSP,

2008). The quality-accuracy distinction goes to the heart of the

robustness issue. If we merely strive to develop a suite of tools

that can mimic observational data, then we can say that

climate models have made great progress (though consider-

able room for improvement remains). The central problem

addressed by Levins’ concept of robustness, however, is that of

relating abstract models to the world—an issue that, for

climate models, ‘‘remains a subject of active research’’ (CCSP,

2008, p. 4). It seems, however, that climate science has not yet

‘‘actively’’ pursued this problem.

Governments continue to invest billions of dollars in GCMs,

seeking to capitalize on the promise of better predictions with

lower uncertainty, and increased relevance to decision

makers. But GCMs continue to have limited applicability at

local and regional scales. Many within the climate science

community see such limitations as reason for further

investment in the development of GCMs. We argue that in

the likely event that such investments continue, considerable

attention should be devoted to model independence.

In pointing out the problem of model independence, we are

also pointing out one of many broader science policy problems

facing climate science. A recent report in Nature suggests that

the IPCC Fifth Assessment will show a wider spread of model

projections than in AR4 (Hefferman, 2010). Is this an appropriate

direction for climate science, given the overriding goal of

informing decisions? Will the Fifth Assessment express a better

grasp of model independence, and thus the meaning of

agreement among models? The answer depends on research

choices made by scientists and science policy makers.

Understanding model independence is likely to be an

interdisciplinary venture. Scientists like Richard Levins have

written on the topic, as have philosophers of science, though

less directly (Cartwright, 1999; Giere, 1990; Norton and Suppe,

2001; Wimsatt, 2007). Scientists and philosophers have also

written on the topic together (Oreskes et al., 1994; Orzack and

Sober, 1993). Historians and social scientists have considered

the history of climate models and what models mean in the

real world (Edwards, 2000, 2001; Lahsen, 2005; Oreskes, 2000;

Oreskes and Belitz, 2001; Oreskes et al., 1994; Parker, 2006;

Shackley and Wynne, 1996; van der Sluijs et al., 1998). There

are also broader questions about the role of models in shaping

disciplines, and in influencing the outcomes of science

(Robert, 2008; Shackley, 2000; Shackley et al., 1998). There is

much more to do, and these scholars will have to work closely

with modelers to understand the details of models and why

they matter.

As with the general problem of uncertainty in climate

science, there will be no silver bullet approach to the issue of

Box 1. Sources of independence and interdependence

among models.

Basic physics: The underlying assumptions about how

the climate works. Many models are similar with respect

to fundamental issues such as principles of conservation

of mass and energy but there can be different assump-

tions about how the climate works

Parameters: Assumptions about how aspects of the sys-

tem operate, such as the effect of cloud cover on global

warming. Parameters are specific variables which can be

represented with code, as opposed to equations which

can reflect more general laws.

Scope and idealizations: The way that models resolve the

system can be different. Models may use different reso-

lutions, have different system boundaries, or make dif-

ferent idealizations. GCMs differ in their resolutions

while making roughly similar boundary assumptions.

GCMs use different idealizations (such as whether the

model assumes that ground soil is 3.5 m or 5.5 m) which

may be literally false but predictively useful.

Data: Observations (e.g. from satellites or ground-based

sensors) used for validating or tuning models, or model

subcomponents. Using data from different time periods

or physical sources could make model analyses indepen-

dent from one another.

Numerical coding: Software and computer processes that

drive models. If equations are resolved through different

coding schemes, this can be a source of independence.

History and sociology: Origins and evolution of the insti-

tutions, personnel, cultural norms and technical

approaches to modeling. If modeling programs were

created based upon another program’s source code

and approach, this may be a source of interdependence.

Professional exchange among modelers can encourage

shared strategies; at the same time, academic norms of

openness and transparency can foster the criticism of

ideas and proliferation of different approaches.
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independence and robustness in climate model results. In

both cases, however, we think that science and society stand

to benefit from a consistent and concerted effort to under-

stand and communicate transparently, especially as research-

ers become bolder in their attempts to make specific regional

predictions, and more insistent in their demands for the

substantial resources needed for this kind of work (e.g. Shukla

et al., 2009). Discourse is essential for maintaining transpar-

ency and avoiding the pitfalls of overconfidence and overreli-

ance on models.
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